4774. Visa - 2

Juhani Heino23.4.2009 klo 16:51
Säie 1088 tuli melkein täyteen ja oli väärällä puolella, joten jatketaan tässä.

Mikä on näitä lukuja yhdistävä asia?
40
400
510
910
1100
2000
Tietenkin voisi saivarrella vaikkapa että kaikki ovat 10:llä jaollisia, mutta useimmat sellaiset luvuthan puuttuvat listasta.
2. Jukkis23.4.2009 klo 18:47
Siis ettäkö noita lukuja yhdistävä asia X on sellainen, että tuohon kuuden luvun joukkoon ei voi enää lisätä yhtäkään uutta lukua, jolle tuo asia X pätisi? Nuo on maailman ainoat "asia X" -tyyppiset luvut?
3. Juhani Heino23.4.2009 klo 20:55
Voi lisätä joitakin, mutta eivät täyttäneet laatuvaatimuksiani. Esimerkiksi tällaiset hylkäsin koska eivät olleet tarpeeksi yleisesti käytettyjä:
900
1010
1500
2010

Mutta listasta unohtui tämä jonka aioin laittaa mukaan:
56
4. Seppo24.4.2009 klo 08:46
XL, CD, DX, CMX, MC ja MM ovat tuolla ekalla listalla ja 56, jonka Juhani aikoi laittaa mukaan on LVI. Nämä roomalaisnumeroversiot ovat kaikki tunnettuja lyhenteitä, kun taas toisen listasi CM, MX, MD ja MMX eivät tuota ehtoa täytä, voivat kyllä olla lyhenteitä, mutta eivät yhtä yleisesti tunnettuja. Mahdoitkohan etsiä tätä yhteyttä?
5. Jukkis24.4.2009 klo 10:17
Aika mainio.

Kyllä toi 1500 = MD = MiniDisc hyvin minusta joukkoon kelpaisi CD:n ja MC:n rinnalle.
6. Matti24.4.2009 klo 11:55
Sepolta hyvin hoksattu.
7. Ari24.4.2009 klo 16:52
Seppo, CM on kyllä mielestäni yleisesti käytössä. Itse käytän sitä senttimetrin tai citymarketin lyhenteenä.
sekä:
MD:http://fi.wikipedia.org/wiki/Md
8. Ari24.4.2009 klo 19:33
Tosin senttimetrit merkitään pienillä kirjaimilla. Jos tuolla on merkitystä tehtävässä niin se ei käy mutta Citymarket käy ja on isoilla kirjaimilla.
9. Seppo24.4.2009 klo 21:40
Odotetaan nyt vielä Juhanin kannanottoa siitä, osuiko arvaukseni kohdalleen ja sitä odotellessa helppo välipala:
Mikä on suurin luku, joka voidaan kirjoittaa näitä edellä esiintyviä roomalaisia numeroita käyttäen?
10. Ari24.4.2009 klo 21:46
MMMCMXCIX (3999)
11. Seppo24.4.2009 klo 21:56
Juuri tuota Arin tarjoamaa lukua hain.
12. Juhani Heino24.4.2009 klo 22:13
Oli aivan oikein. Citymarket tuli mullekin mieleen, mutta en pitänyt sitä tarpeeksi virallisena lyhenteenä. Ja roomalaiset numerot ovat yleensä isoja kirjaimia, joten siksi senttimetri ei käynyt kuten Ari totesi.

Unohtui muuten CV = 105, mutta aika usein sekin kirjoitetaan pienillä.
13. Juhani Heino9.5.2009 klo 18:27
Mikä näistä on hävinnyt?

aini
Koues
kusura
kuuset
mettari
nesenssi
vanen
14. Matias-Myyrä9.5.2009 klo 18:29
Lumi on hävinnyt!
15. Juhani Heino9.5.2009 klo 18:36
Jep, tuumin että nyt on sopiva aika esittää tämä - Lapissakin lienee jo ihan kivalla mallilla.
16. Matias-Myyrä9.5.2009 klo 19:05
Mikäs näistä on hävinnyt? :-D

ilsä
kko
It
Reet
tintyjä
Yt
17. Juhani Heino9.5.2009 klo 19:37
Ollaankohan jo liian kuivia kun VESIkin on jo hävinnyt. Oli muuten vaikea hahmottaa TV-esiintyjä vielä senkin jälkeen kun muista olin keksinyt.
18. Matias-Myyrä9.5.2009 klo 19:44
Katselen juuri Karpon ohjelmaa Pohjanmaan tulvista 25 vuotta sitten. Sieltä ei vettä puutu!
19. RA9.5.2009 klo 20:03
Hannes ja Pirjo Tiiran kyssäri.
Kuka kirjailija?

KOMIS
KIRANI
KAUNAR
? (6)
20. Juhani Heino9.5.2009 klo 20:10
Aino Kallas? (K, sitten jokin Suomen kunta takaperin)
21. Juhani Heino10.5.2009 klo 12:23
Mikä kaupunki? (10)
LIPJAKAAPU
LOHIOOGO
VAALANAAKUNA
22. mor10.5.2009 klo 12:29
Viitasaari?
23. Juhani Heino10.5.2009 klo 12:37
Kyllä. Siis TASAA VIIRIn sisällä ja muissa samantapainen.

Kuka lauluntekijä? (5, 10)
PANNA SORSANIHEDE
PIINA ANKKANIKÄPY
PAINO KURKINIITIÖ
24. mor10.5.2009 klo 12:39
Pauli Hanhiniemi?
25. Juhani Heino10.5.2009 klo 12:51
Jep. P, naisen nimi, lintu, NI, jokin kasvien lisääntymiseen liittyvä.

Kuka poliitikko? Taidankin jättää pituuden pois että on ehkä hiukan enemmän pähkäilyä.
SADIN RALLI
ANSA RIILÄ
NAUHA KALERI
26. RA10.5.2009 klo 13:07
Paula Risikko (ynonyymi + t pois; tralli, ritilä, kalteri, ristikko)
27. RA10.5.2009 klo 13:25
Tiirailua edelleen:

Kirjailija?
SÄTERINREUNA
KANKAANSYRJÄ
?
28. Matias-Myyrä10.5.2009 klo 13:48
Lienee SILLANPÄÄ
29. RA10.5.2009 klo 13:53
Sepä se.
Vielä yksi:

Kirjailija? Sukunimeä haetaan.
STOA
SPEA
?
30. Juhani Heino10.5.2009 klo 14:57
Paula Risikko oikein. Taas poliitikko:

TARU POLVINIITTY
SAGA KYYNÄRHAKA
RUNO RANNEKETO
31. Juhani Heino10.5.2009 klo 15:31
Nyt taisi välähtää: Kaarlo Sarkia? (S, arkipäivä, A)
32. mor10.5.2009 klo 15:46
Juhanin viimeisimpään Satu Taiveaho.
33. Matti10.5.2009 klo 15:57
APINAUHKA
MAKITUNTURI
ORANKIMÄKI
34. Matias-Myyrä10.5.2009 klo 16:03
Matilla LARIVAARA
35. Matti10.5.2009 klo 19:01
Matias-Myyrä, yeah.
36. Juhani Heino10.5.2009 klo 19:18
Satu Taiveaho oikein. Vielä politiikasta mutta hieman eri tehtävästä:
EURRO MONNIO
PESSO TAIMENO
LATTI SAMPIO
37. nassakka10.5.2009 klo 19:25
Jenni Haukio
38. Juhani Heino10.5.2009 klo 19:45
Kyllä, kokoomuksen viestintäpäällikkö ja puhemiehen vaimo.

Kuka kirjailija ja entinen yritysjohtaja?
JALLU SUURIKIVI
JERMU JÄTTILOHKARE
VELI MAHTIMURIKKA
39. RA10.5.2009 klo 19:46
Edelleen politiikkaa:

ANNELI KUITUINEN
LEHTONEN-SÄIKEINEN
TIILIKAINEN-SYINEN
40. Maikki10.5.2009 klo 19:46
Kalle Isokallio
41. Matias-Myyrä10.5.2009 klo 19:59
Onko RA:lla haussa SAULI NIINISTÖ?
42. Juhani Heino10.5.2009 klo 20:06
Kalle Isokallio oikein. Mikä menetelmä? (14)
SANTAVARKAUS
SORARYÖSTÖ
SAVIPETOS
43. mor10.5.2009 klo 20:08
Juhanilla hiekkapuhallus.
44. Juhani Heino10.5.2009 klo 20:38
Hiekkapuhallus oikein. Mikä sävelteos?
SATASATUNA ASPIRIN
HIILIANNENA DISPERIN
OHJELMOINTIKIELIVIRPINÄ KETORIN
45. Maikki10.5.2009 klo 20:57
Olisiko Juhanilla Carl Orffin musiikkiteos
Carmina Burana
46. Arskis10.5.2009 klo 20:58
CARMINA BURANA
47. Juhani Heino10.5.2009 klo 21:05
Carmina Burana oikein. Mikä ruoka?
JAVETOKETJUSIMAALIT
YESHAKASESIPETSIT
HAINYÖRISIVERNISSAT
48. Matias-Myyrä10.5.2009 klo 21:06
SINAPPISILAKAT
49. Juhani Heino10.5.2009 klo 21:18
SINAPPISILAKAT oikein. Taas jotain syötävää:
SIINNÄTKE
PÄILYTPE
PILKOTATTO
50. Matias-Myyrä10.5.2009 klo 21:23
KANGASTATTI
51. Juhani Heino10.5.2009 klo 21:41
KANGASTATTI oikein. Kuka tietokirjailija?
SALLI LUMMEAALTON
SUO KAISLAMAININKIN
JAA VITAKAREN
52. Maikki10.5.2009 klo 21:45
Anna Kortelainen
53. Juhani Heino10.5.2009 klo 22:16
Anna Kortelainen oikein. Nyt taidan jättää putiikin muiden hoidettavaksi - palaan taas kun tulee uutta ideaa.
54. Jaska10.5.2009 klo 22:47
Näähän on kivoja! Mikä ooppera?

SIKSVIRNE
FORELLSIRVE
HARRINFLIN
55. turutar10.5.2009 klo 22:54
Lohengrin.
56. Jaska10.5.2009 klo 23:22
No eipä saanut turutarta ruåttilla hämättyä. LOHENGRIN oikein.
57. Juhani Heino16.9.2009 klo 20:41
Tuli idea joka sopii parhaiten tähän. Kuka muusikko ja vaikuttaja?
ALBERTO AL
ROBERTO RO
UMBERTO UM
58. Jaska16.9.2009 klo 21:48
GILBERTO GIL. Hämärä muistikuva, jonka netistä varmistin.
59. Juhani Heino16.9.2009 klo 22:22
Jep, Gilberto Gil oli myös Brasilian kulttuuriministeri.
60. Jaska16.9.2009 klo 22:28
Kuka muusikko ja vaikuttaja?

TOKAVIKA!
61. Jaska16.9.2009 klo 22:59
Oli ehkä liian sumea. Hälvennys:

TOKA VIKA!
62. turutar16.9.2009 klo 23:19
Jotenkin nyt tuppaa BON JOVIa tuohon Jaskan arvoitukseen, mutta en kyllä pitäisi vaikuttajana.
63. Jaska16.9.2009 klo 23:36
Ei Bon Jovi.
64. turutar17.9.2009 klo 01:58
Voisihan se olla BONOkin?

(O-kirjainhan on kreikkalaisten viimeinen aakkonen, näin olen antanut itselleni kertoa.)
65. RA17.9.2009 klo 11:12
Kreikkalaisissa aakkosissa on kaksi O:ta?
- Ï ï omikro(n) omikron omicron, O (15. kirjain)
- Ù ù omega oomega omega oo, O (24. kirjain, viimeinen kirjain)
66. RA17.9.2009 klo 11:18
(Höh... Ï ï Ù ù?? Omikronin merkki on O ja omegan se hevosenkengän näköinen merkki.)
67. Juhani Heino17.9.2009 klo 11:48
Katsotaanpa onnistuvatko kreikkalaiset merkit tästäkään.
Οο omikron
Ωω oomega
68. Jaska17.9.2009 klo 11:50
BONO on oikein. B ON Omega.
69. RA17.9.2009 klo 11:50
Taputaputap, Juhani.
70. Jukkis17.9.2009 klo 12:23
Millä logiikalla "TOKA VIKA" -> "B ON Omega"?

Etenkin kun tosiaan omega ei ole O.
71. -17.9.2009 klo 12:47
omega = oomega, "pitkä o", oo, kreikk. aakkoston viimeinen kirjain, Ωω

Bonoo?
BonΩ?
Bonω?
72. Jaska17.9.2009 klo 13:02
Ystävällisesti toistan: BONO on oikea vastaus arvoitukseeni. Kiitän huomioitsijoita sen herättämästä mielenkiinnosta.
73. si-tee-raaja17.9.2009 klo 13:07
"Minäkin hetken epäröin ratkaisusanaa, koska se ei oikeasti ole TUU-TUU, vaan TUU TUU."
74. Matti17.9.2009 klo 14:08
Taputaputap, turutar.
75. Jaska17.9.2009 klo 18:56
Kyllä turutar eniten vaativia arvoituksiani ratkoneena onkin aplodinsa ansainnut.
76. Ari13.1.2010 klo 21:46
Minkä "linnun" nimi on melkein...?
77. yrjö13.1.2010 klo 22:04
Alkulintu?
78. Ari14.1.2010 klo 07:45
yrjö, ei.

Ja kun kysymys kuuluu MINKÄ niin vastaus pitää olla sen mukainen. Sana kuulostaa linnun nimeltä vaikka ei sitä ole.
79. ässä14.1.2010 klo 14:35
Saattaisit etsiskellä puutiaista...
80. turutar14.1.2010 klo 14:43
Tai voilokkia?
81. Jaska14.1.2010 klo 15:42
Arin mukaan vastauksen pitää olla genetiivissä.
82. Juhani Heino14.1.2010 klo 18:29
Ei varmaan myöskään SUORASTAAN?
83. Jaska14.1.2010 klo 18:44
Kylläpä varmaan!
84. Ari14.1.2010 klo 19:12
Oikein, Juhani! Sitä hain.
85. Matias-Myyrä12.6.2011 klo 19:37
Löysin netin visailuryhmään v. 1999 tekemäni anagrammivisan.
Kyse on suomalaisista Sevillan MM-yleisurheilijoista.
Kokeilkaapa montako löydätte!
Etsikää vaikka Googlella silloisen joukkueen jäsenet!

----------------------------------------------

Oheiseen tarinaan on piilotettu Suomen MM-joukkueen urheilijoita
anagrammeina. Ihan koko joukkuetta en saanut mahtumaan, mutta enpä sanokaan etukäteen montako pitäisi löytyä. Anagrammit muodostuvat yhdestä tai kahdesta peräkkäisestä sanasta.

====================================
Joitain Sevilla saattaisi hirvittää, mutta mies, laiha
kuin lamakirahvi, pistää kaiken kehiin ja syö tehoyrtit.
Voiko ihailu taata ettei hormoneita loju tämän tonnin vonkaleen
lautasella, sillä optimimurot saattaisivat siis joutua
äkkiä viemäreihin.
Ihan kaipaa Virenin aikoja, jolloin selostaja
aikanaan pitkään intosi: "Ihanata herrani, ihanata".
Punapaita, neiti Tammi luovuttaa radan Manniselle, joka
aikoo tatuoida kuvia iholle.
Ennuste: kohtuullista ilmaa luvassa Gamla Ekbergiin.
"Lyön laskennan aikana Pentti Kahman", Marlow arveli eikä
Columbo saane syyllistä selville. Myös sarjauhri ihmetteli:
"Taasko koiranpenikka jalalle kusi?"
====================================
86. ake13.6.2011 klo 21:59
Olihan tätäkin lopulta yritettävä; löysin tuosta tarinasta 15 miesurheilijaa ja 9 naisurheilijaa.
87. Matias-Myyrä13.6.2011 klo 22:09
Hyvä ake! Olet näköjään löytänyt ihan kaikki piilotetut urheilijat.

Haluaako joku vielä miettiä, vai paljastanko oikean vastauksen?
88. Matias-Myyrä15.6.2011 klo 19:23
Vastaukset:

Heikki Vääräniemi - äkkiä viemäreihin
Mika Halvari - lamakirahvi
Arsi Harju - sarjauhri
Mikaela Ingberg - Gamla Ekbergiin
Heli Koivula - kuvia iholle
Ville Tiisanoja - joitain Sevilla
Tiia Hautala - ihailu taata
Matti Niemi - neiti Tammi
Harri Haatainen - Ihanata herrani
Johan Meriluoto - hormoneita loju
Timo Tompuri - optimimurot
Aki Parviainen - kaipaa Virenin
Olli-Pekka Karjalainen - koiranpenikka jalalle
Valentin Kononen - tonnin vonkaleen
Tytti Reho - tehoyrtit
Jussi Autio - siis joutua
AnneMari Sandell - radan Manniselle
Samuli Vasala - ilmaa luvassa
Sanna Kyllönen - lyön laskennan
Marko Wahlman - Kahman Marlow
Manuela Bosco - Columbo saane
Taina Uppa - Punapaita
Aki Heikkinen - kaiken kehiin
Tiina Kankaanpää - aikanaan pitkään
89. Matias-Myyrä12.7.2011 klo 16:37
Löysin myös tämmöisen v. 2004 laatimani ongelman:

PIILOPALINDROMI

- Sinä vahvistat tähdet. (10)
- Kyseinen kuitti ylähuoneessa. (8)
- Irina, vie säde italialaiselle. (9)
- Kierrevyyhti tanssijan asuna. (5)
- Kaiverrat ontoksi, suurenmoinen. (8)
- Rako eläinsuvussa on liian pieni. (8)
- Vesi jutussa on nukuttava. (9)
- Kallis Arska. (5)
90. Eki12.7.2011 klo 16:41
Oli hauska, meni hetki tajuta, mistä on kysymys.
91. Ari28.11.2011 klo 23:18
VALvira ja Evira (9)
92. Juhani Heino30.11.2011 klo 10:56
valevirat? (niitähän kyseisten virastojen olisi pitänyt paljastaa)

Mistähän kummasta tässä on sitten kyse?
"Ken Voice liekin Sam! Mutta ensiluokkainen."
93. Jaska30.11.2011 klo 11:13
Ei ole tuo lainkaan visaa, vaan hempeän pehmyttä flooraa:
LILJANKUKKA.
94. sanoittaja30.11.2011 klo 11:14
Little young cook, uh?
Siis vastaus edelliseen.
95. sanoittaja30.11.2011 klo 11:17
myöhästyin minuutilla
96. Juhani Heino30.11.2011 klo 12:25
Liljankukka oikein, lopussa oli muodon vuoksi pieni hämäys ettei aivan suoraan pysty lukemaan.
97. Ari11.1.2012 klo 06:29
Tavuparivisa:

Sanasta löytyy kaksi tavuparia (13).
98. Matias-Myyrä11.1.2012 klo 08:50
vastustuskyky
99. Jaska11.1.2012 klo 11:52
Tavuparit Matias-Myyrän esittämään tapaan, mutta sanassa ei niiden lisäksi muita tavuja.
100. Matias-Myyrä11.1.2012 klo 13:45
Kaksitavuisia sanoja, jossa sama tavu toistuu, löytyi sanastostani tämän verran:
cancan, couscous, dödö, huhu, jojo, juju, kaskas, katkat, koko, kuskus, kyky, kytkyt, lyly, pipi, pupu, pöpö, sitsit, tomtom, toto
Noistahan voi yhdistellä mitä tahansa: totojuju, dödöhuhu, pupupöpö, cancankyky...
101. Jaska11.1.2012 klo 14:09
Totojuju on hyvä. Vielä parempi pupujuju (taikurin hatusta), jossa samat vokaalit molemmissa pareissa. Lisätään M-M:n listaan popo, joten em. ehdon täyttää myös POPOKOKO.
102. Ari11.1.2012 klo 18:45
Matias-Myyrän vastustuskyky oli hakemani sana. Sanassa sai siis olla myös muita tavuja.
103. Ari11.1.2012 klo 18:49
Siis niin kuin visastani piti pystyä päättelemään, niin kun kirjainten lukumäärä on pariton niin on pakko olla pariton tavu mukana.
104. Jaska11.1.2012 klo 21:59
Mutta ei kaiketi ollut pakko olla?
105. Jaska11.1.2012 klo 22:01
Siis muiden ratkaisujen.
106. Matti12.1.2012 klo 00:27
Ari, laittamattomasti päätelty.
107. Ari24.5.2012 klo 22:09
Miten jatkuu?
Jaakko Kolmonen, Kyösti Kakkonen, ...
108. pius24.5.2012 klo 22:13
...Kodin Ykkönen
109. Ari24.5.2012 klo 22:22
Ei, henkilö hakusessa.
110. Maikki24.5.2012 klo 22:26
Ykä Yksinäinen (kirjan päähenkilö)
111. Ari24.5.2012 klo 22:30
Ei.
112. Jaska25.5.2012 klo 11:25
... Ritari Ässä.
113. Matias-Myyrä25.5.2012 klo 11:27
Uuno on numero yksi!
114. Wexi25.5.2012 klo 11:45
"Oskari Olematon nollakatu nolla"
115. Ari25.5.2012 klo 11:55
Matias-Myyrä arvasi oikean, Wexille bonuspisteet hyvästä lisäjatkosta.
116. Matias-Myyrä31.5.2012 klo 17:32
Missä laulussa Junnu Vaino oli huolissaan kalojen hyvinvoinnista?
117. RA31.5.2012 klo 17:36
Käyn ahon laitaa:

"... hoitakaa te uskolliset hyvin sorvia
jo näkyy hiirenkorvia..."
118. Matias-Myyrä31.5.2012 klo 17:38
Juu, oikein!
119. Ari27.11.2012 klo 10:56
Mikä yhdistää nimet Jaana, Jatta, Jukka ja Leena?
120. RA27.11.2012 klo 11:03
MAR
121. Ari27.11.2012 klo 18:07
Oikein, RA.
122. Matias-Myyrä1.7.2013 klo 08:07
Mistä Suomen järvestä löytyy ruuanlaitossa tarvittava väline?

En tarkoita sellaisia, joissa tuo väline on yhdyssanan osana (Kauhajärvi, Kattilajärvi tms.).
123. ässä1.7.2013 klo 08:17
Mallasveden osana on allas, jota voit käyttää astioiden tai ruoka-ainesten pesuun, mutta uskoisin Sinun hakevan jotakin muuta.
124. Matias-Myyrä1.7.2013 klo 08:22
Juu, jotakin muuta.
125. Matias-Myyrä1.7.2013 klo 14:26
Käytin kyseistä työvälinettä eilen kokatessani. Välineen nimi on yhdyssana. Järvi on yksi Suomen suurimmista.
126. PA1.7.2013 klo 16:26
Puulasta.
127. Matias-Myyrä1.7.2013 klo 16:29
Hyvä PA, vastaus on oikein!
128. Jaska1.7.2013 klo 18:28
Jarkon eka ei kaukana?
129. Tiio1.7.2013 klo 19:29
Jaska alkanut kupittelemaan, martini on jo huulilla.
130. Jaska1.7.2013 klo 22:24
Martini?? Ei niin vahvaa. Pehmennetään Tiionkin nautittavaksi:

Jarkon juoma muutaman kilometrin päässä?
131. arvid2.7.2013 klo 14:13
Jarkon eka juomaksi sopisi Lahden A, vaikka tuskin on oikea vastaus. (Jarkko Lahti; näyttelijä, lienee suht. kuuluisa, koska löytyy wikipediasta). Tuohon "muutaman kilometrin päässä" se ei oikein luonnu, mutta vastaan nyt kuitenkin.
132. Jaska2.7.2013 klo 19:12
Voi hyvät hyssykät, tehtävä on siis jatkoa edelliselle!
133. Satunnaisin vierailija2.7.2013 klo 20:17
Puulasta länteen, Joutsan itäpuolella sijaitsee Suontee.
134. Jaska2.7.2013 klo 21:46
SUONTEE oli haussa.
135. arvid2.7.2013 klo 22:58
Jatketaan sitten samalla teemalla. Pohjoiskarjalainen porukka matkallaan Länsi-Suomessa oli tilannut juomat, joista paikalliset yrittivät päästä jaolle. Vieraat yrittivät pitää puolensa mainitsemalla ko. kylän nimen. Missähän he olivat ?
136. Jaska2.7.2013 klo 23:10
Kaiketi Karjalassa.
137. arvid2.7.2013 klo 23:14
Sopisi hyvin sekin. Siis Mynämäen Karjala. Mutta kysymäni on lähempänä Tamperetta, Pirkanmaalla eikä juomassa ollut alkoholia. Vastaus liityy läheisesti äskeiseen teemaan.
138. arvid2.7.2013 klo 23:27
Pieni helpotus: Karjalan murteella ilman possessiivisuffiksia puolensa pitivät.
139. Jaska3.7.2013 klo 10:50
Vesijako olisi sopinut jotenkuten vihjeeseen, mutta se sijaitsee Päijät-Hämeessä. "Pieni helpotus" hämmentää koktailin kokonaan juomakelvottomaksi.
140. Wexi3.7.2013 klo 11:30
Mansen äijä ajatteli ottaa Möhkön miehestä mittaa: Nouse ylös, ja tappele kuin mies!
Samaan aikaan tarjoilija kysyi: Miten haluatte kahvinne?
"Mustoo", rääkäisi Möhkön mies.
141. Jaska3.7.2013 klo 12:35
Siis arvidillako mustaa kahvia? Miten se possessiivisuffiksittomuus liittyy asiaan?
142. ake3.7.2013 klo 12:44
Musta tuntuu, että Luopioisissa juotiin teetä?
143. arvid3.7.2013 klo 20:06
Teetä tosiaan juotiin, mutta ei Luopioisissa vaan Sastamalan Kiikoisissa. Ehkä kerron hakemani kylän nimen, koska murteen tuntemukseni saattoi olla puutteellista. Joka tapauksessa karjalan ja savonkin murteessa me= myö (tarkistin Wikipediasta ja urbaani sanakirjasta ja onhan se muutenkin tunnettua).
Jos siis me=myö niin päättelin, että meidän = myön.
Hakemani kylä Sastamalassa on Myöntee.
144. Satunnaisin vierailija3.7.2013 klo 20:36
Savolaismurteissa, joihin Pohjois-Karjalan murrekin kuuluu, kyseinen sana lienee meijän. Itse asiassa vielä Päijänteen länsipuolellakin sanotaan näin. Piipahdin juuri Kuhmoisissa, jossa käytettiin juuri em. genetiiviä (ja tervehdys päiväsaikaan muuten kuuluu: hyveä päiveä).
145. Tiio3.7.2013 klo 21:01
Me = myö, tähän asti oikein. Meidän = meijän, (puoltoista jiitä saa olla, kaksi ehkä liikaa)

Jotta viärin män murretulukinnat, se on arviitinkii pakko myöntee.

(myöntää = myöntee)

(Pohjos-Karjalan murteen kutakuinnii osoon.)
146. Jaska3.7.2013 klo 21:26
Jatketaan kyläilyä:

ARVIDILLA PALJASTUNEEN MIEHENKIN EDELLÄ (12)
147. arvid3.7.2013 klo 21:31
Myönnän puutteeni savonmurteessa. Hyvin lähellä Myönteen kylää on toinen kylä (Kiikoisten naapurikunnassa Laviassa), jossa nimen perusteella ollaan erittäin myötämielisiä. Kylä nimi on Myöntäjä.
Laviasta tuli mieleeni, että yleensä "muukalaiset" sanovat Lavialla, mutta lavialaiset itse ja Lavian naapurikuntalaisetkin sanovat Laviassa. Toisaalta kaikki sanovat Luvialla. Kieli on ihmeellistä ! Itse olen kotoisin eräästä Lavian naapurikunnasta, joten asia on minulle tuttu.
148. Ari26.3.2014 klo 20:43
Suola sisältää tämän kuunneltavan jota sokeri ei sisällä.
149. TJV26.3.2014 klo 21:36
Kyllä näkyy tekevän. Sokeri taas toisen, jota suola ei sisällä. Kummankin uskon kuulleen paljon toisiaan.
150. Juhani Heino3.10.2015 klo 11:41
Mikä on näiden sanaparien idea? Ihannetapauksessa laittakaa keksittyänne jokin uusi pari, niin muut voivat jatkaa pähkäilyä. Jos ei löydy, laitan itse joskus lisää.

huippu - puuhat
kädet - säkki
151. Eki3.10.2015 klo 11:59
näinkö?

tilkka - kultit
rukiit - virsu
152. Juhani Heino3.10.2015 klo 12:14
Ei mene mun tavallani, joten voit paljastaa oman ideasi saman tien.
153. Eki3.10.2015 klo 12:22
Sitäkin voi kaikki miettiä, miten minä sen ymmärsin.
154. Juhani Heino3.10.2015 klo 12:45
Totta, voidaan perustaa J-haara ja E-haara. Tässä J-haaraan lisäys, toivottavasti ei nyt osu yksiin E-haaran kanssa:
arpi - verka
155. Eki3.10.2015 klo 13:18
Osuupas.
156. Juhani Heino3.10.2015 klo 15:34
Entäpä:
korpi - verkko
157. Juha N3.10.2015 klo 16:25
Hämmentävää. Löydän identtisen yhteyden sekä sanojen ARPI ja VERKA välille että sanojen KORPI ja VERKKO välille, mutta se yhteys ei toimi edellisiin E- ja J-sarjaisiin sanapareihin.
158. Eki3.10.2015 klo 16:26
Juhanin seuraavakin sopii ideaani.
159. Juha N3.10.2015 klo 16:28
Tarkoitin sanoa: sanojen ARPI ja VERKA välinen yhteys on mielestäni sama kuin sanojen KORPI ja VERKKO välinen.
160. Juha N3.10.2015 klo 17:29
tain - ammatti
161. Juhani Heino3.10.2015 klo 18:09
Juha N teki mullekin sopivan, jos kielikorvani toimii. Eli J-haarassa ovat nyt:
huippu - puuhat
kädet - säkki
arpi - verka
korpi - verkko
tain - ammatti
Löysitkö Juha nyt siis yhteyden myös aiempiin?
162. Eki3.10.2015 klo 18:13
tain - ahmatti sopisi minusta molemmille.
163. Juhani Heino3.10.2015 klo 18:34
Ahmatti ei sovi J-haaraan. (tarttuu mahastaan kiinni...)
164. Juha N3.10.2015 klo 18:49
Tajuan J-haaran sanaparien sisäiset yhteydet, joita on mielestäni seitsemän kappaletta kullakin sanaparilla. E-haaran jujua en ole vielä keksinyt.
165. Juha N3.10.2015 klo 18:56
Korjaus: J-haaran kahdella ensimmäisellä sanaparilla on seitsemän valinnaista sisäistä yhteyttä, mutta kolmella seuraavalla yhdeksän.
166. Juhani Heino3.10.2015 klo 19:36
En näköjään itse löydä noin monta yhteyttä - täytyy verrata sitten kun ratkaisu on julki. Mutta muille vinkiksi että yhteyksiä on tosiaan useampia.
167. Juha N4.10.2015 klo 10:41
Muutama sanapari lisää Juhanin sarjaan, jossa siis tehtävänä on löytää sanaparilistan idea ja osoituksen idean ymmärtämisestä muodostaa uusia samanlaisia sanapareja.

koinen - esikko
kultainen - alitus
omittava - viaton
168. Juha N4.10.2015 klo 10:42
korjaus: osoituksen > osoituksena
169. Juhani Heino4.10.2015 klo 18:14
Jep, kaikki toimivat J-haarassa.
170. ++juh4.10.2015 klo 22:12
ahdin - tahmeat
liuos - ulkoinen
171. Juhani Heino4.10.2015 klo 22:26
Kyllä vain, nuokin toimivat.
172. Juhani Heino10.10.2015 klo 17:38
On lipsahtanut jo kolmossivulle, joten laitan viikonlopun jälkeen vastauksen. Senkin jälkeen jää tietysti E-haara pohdittavaksi.
173. Jaska10.10.2015 klo 19:13
Valistumaton arvaus. Liittyy kymmensormijärjestelmään.
174. Juhani Heino10.10.2015 klo 21:15
Ei ainakaan J-haara. Eki saa vastata E-haaran osalta.
175. Juha N10.10.2015 klo 22:07
Auttaisiko Jaskaa, jos näitä sanapariesimerkkejä tehtailtaisiin lisää? Tässä kaksi:

allas - laatta
tomuinen - suodin
176. Eki10.10.2015 klo 22:16
Näitä en ymmärrä J-haarassa:
huippu - puuhat
kädet - säkki
177. Juhani Heino10.10.2015 klo 23:07
Juhalla oikeat parit. Jäljellä oleville hämärä vinkki: Eki, kokeile vielä toista muotoa.
178. Eki10.10.2015 klo 23:11
Ei piru toimi kaikissa sekään.
179. Juhani Heino10.10.2015 klo 23:38
Saatat olla oikeilla jäljillä. Riittää että jokin muoto. Nähdäkseni on kyllä ollut tietty muoto joka toimii kaikilla nyt esitetyillä.
180. Jaska10.10.2015 klo 23:47
Ekin mainitsemissa on ainakin se yhteys, että kummassakaan ei ole näppäimistön alimmaisen rivin kirjaimia. Muillakin on yhtymäkohtia näppäimistöön. Mutta se ei siis taida olla villakoiran ydin.
181. Eki10.10.2015 klo 23:53
Joo, minulla oli samanhenkinen idea kuin mistä Juhani puhuu, mutta perusmuodoissa ja kaikissa oli yhden kirjaimen ero.
182. Juha N11.10.2015 klo 11:48
Tässä lisää J-haaraan:

imetty ydin
hidas haitta
etinen side

Alkaako polttaa jo?
183. Jaska11.10.2015 klo 12:45
Joo, tuli kolmannen asteen palohaava. Eri kaasuksia sekaisin.
184. Jaska11.10.2015 klo 12:56
Siis tietysti yhdellä parilla sama sija.
185. Juhani Heino11.10.2015 klo 18:24
Kun idea nyt tuli julki, ei tarvi odottaa ensi viikkoon. Parin sanat eivät perusmuodoissaan ole anagrammeja, mutta jossain sijamuodossa ovat. Esimerkkitapaukset toimivat adessiivilla:
huipulla - puuhilla
käsillä - säkillä
arvella - veralla
korvella - verkolla
taimmalla - ammatilla
koisella - esikolla
kultaisella - alituksella
omittavalla - viattomalla
ahtimella - tahmeilla
liuoksella - ulkoisella
altaalla - laatalla
tomuisella - suotimella
imetyllä - ytimellä
hitaalla - haitalla
etisellä - siteellä

Samaten ne toimivat inessiivillä eli -ssa.

Joillakin toimii monikin muoto. Yhdeksää en tästä saa, mutta ottiko Juha N akkusatiivin (joka tässä muistuttaa genetiiviä) erikseen vai onko multa jäänyt huomaamatta jotain?
arven - veran
arveksi - veraksi
arvessa - verassa
arvesta - verasta
arvella - veralla
arvelta - veralta
arvelle - veralle
arvetta - veratta
186. Juha N11.10.2015 klo 20:07
J-sarjassa on kahden eri tyypin sanapareja: sellaisia, joiden molemmat sanat ovat yksikössä (sarja J1), ja sellaisia, joiden toinen sana on yksikössä ja toinen monikossa (sarja J2).

Koska sarjassa J1 voidaan käyttää sekä yksikön että monikon sijamuotoja, anagrammit antavia taivutusmahdollisuuksia on enemmän, kaikkiaan yhdeksän tai kymmenen. Tämä sanaparin arpi - verka sijamuotolista pätee sarjan J1 kaikkiin sanapareihin:
- yksikön genetiivi: arven - veran
- yksikön translatiivi: arveksi - veraksi
- yksikön inessiivi: arvessa - verassa
- yksikön elatiivi: arvesta - verasta
- yksikön adessiivi: arvella - veralla
- yksikön ablatiivi: arvelta - veralta
- yksikön allatiivi: arvelle - veralle
- yksikön abessiivi: arvetta - veratta
- monikon nominatiivi: arvet - verat

Edellä mainittuja sijamuotomahdollisuuksia on yhdeksän, ja kymmeneskin, yksikön essiivi, onnistuu niillä sanapareilla, joiden kummankaan sanan taivutusvartaloon ei tarvitse tehdä astevaihtelumuutoksia, kun vaikkapa genetiivipääte -n vaihtuu essiivipäätteeksi -na. Siis: kultaisena - alituksena, omittavana - viattomana, liuoksena - ulkoisena, tomuisena - suotimena, etisenä - siteenä.

Koska sarjan J2 sanaparien toinen sana on jo monikossa, monikkovariaatio ei ole mahdollinen, jolloin anagrammit antavia taivutusmahdollisuuksia on seitsemän tai kahdeksan:
- translatiivi: huipuksi - puuhiksi, säkiksi - käsiksi, ahtimeksi - tahmeiksi
- inessiivi: huipussa - puuhissa, säkissä - käsissä, ahtimessa - tahmeissa
- elatiivi: huipusta - puuhista, säkistä - käsistä, ahtimesta - tahmeista
- adessiivi: huipulla - puuhilla, säkillä - käsillä, ahtimella - tahmeilla
- ablatiivi: huipulta - puuhilta, säkiltä - käsiltä, ahtimelta - tahmeilta
- allatiivi: huipulle - puuhille, säkille - käsille, ahtimelle - tahmeille
- abessiivi: huiputta - puuhitta, säkittä - käsittä, ahtimetta - tahmeitta
- essiivi vain tällä ++juh:n keksimällä: ahtimena - tahmeina

J-sarjassa oli ideana käyttää sellaisia sanoja, joiden taivutusvartalot ovat astevaihtelun takia nominatiiviin nähden niin erilaisia, ettei pelkkiä nominatiivikaksikkoja katsomalla voinut arvata, että sanat muuttuvat samassa sijamuodossa taivutettuna toistensa anagrammeiksi.
187. Juhani Heino11.10.2015 klo 20:42
Nyt ymmärrän. Mä ajoin takaa vain sijamuotoja, eli luku (yksikkö / monikko) ei ollut vaihdettavissa. Mutta mitäs en sanonut sitä eksplisiittisesti. Tuohan kyllä antaa eräänlaisen mahdollisuuden täyteen sarjaan, kun perusmuoto eli nominatiivi saadaan mukaan. Varmaan saamme täydennettyä sopivat parit niin että loputkin sijamuodot käytetään. Jatkan seuraavalla puuttuvalla eli partitiivilla:
kuusta - kutsua (kuusi, kutsu)
188. Jaska11.10.2015 klo 22:06
Haa, tein siis anagrammi-idean auettua heti sääntörikkomuksen, kun kelpuutin saman sijan toisen numeruksen ratkaisuksi. Joka tapauksessa sekin malli toimii: tain - ammatti -> taimmat - ammatit.
189. Jaska11.10.2015 klo 22:23
Partitiivia eri numeruksessa: sadin - maisti
190. Juhani Heino14.10.2015 klo 08:22
Illatiivi toimii näillä:
liuokseen - ulkoiseen
tomuiseen - suotimeen

Lisään komitatiivin:
puskuineen - puuskineen
191. Juhani Heino17.10.2015 klo 11:50
Pistän jutun pakettiin viimeisellä eli instruktiivilla. Juha N:n essiivilista toimii tässä kokonaan:
kultaisin - alituksin, omittavin - viattomin, liuoksin - ulkoisin, tomuisin - suotimin, etisin - sitein
192. Juhani Heino17.10.2015 klo 11:56
Joku voi kyllä pitää ongelmana sitä, että komitatiivi ja instruktiivi ovat aina monikollisia vaikka tarkoittaisivatkin yksikköä. Eli yllämainituissa silloin perusmuotokin olisi sama. Ongelmaa ei ole esim. samassa sanassa kuin laitoin komitatiiviinkin:
puskuin - puuskin
193. Juhani Heino21.12.2015 klo 21:10
Pari kysymystä, jotka ovat outoja mutta eivät kai mahdottomia. Lisäselvitystä annetaan pyydettäessä.

Mikä on makean vastakohta? (lyhyt pohdiskelu)
Mikä on takanjalka? (sanaleikki, ei oikea sisustusrakenne)
194. Jaska21.12.2015 klo 23:06
Hep ekaan melekin heti, eri juttu, onko tarkoitettu. Tokaan ei tunnissakaan löytynyt leikillistä eikä vakavaakaan ehdokasta.
195. Juhani Heino23.12.2015 klo 21:24
Laitapa sitten ehdotuksesi - kai tässä on jo annettu muille tarpeeksi aikaa.

Jälkimmäisen idea on hämärästi selitettynä: kun A (alakäsite) on B (yläkäsite), takanjalka on samalla tavalla muokattuna C. Takanjalka on ainoa joka ei ole samaa kategoriaa kuin A, B ja C.
196. Jaska23.12.2015 klo 22:44
Ehdokkaani on saara. Perusteena mm. sijainti telluksen vastakkaisilla puolilla:)

Hämärää tosiaan. C ei siis ole samaa kategoriaa kuin C?

Esitänpä muille mahd. pohtineille helpomman: mikä on takajalka?
197. Wexi24.12.2015 klo 00:18
Jaska, liittyykö joulupöytään?
198. Jaska24.12.2015 klo 09:45
Ei ainakaan suoranaisesti. Ratkaisusanassakin on yhdeksän kirjainta.
199. Juhani Heino24.12.2015 klo 16:04
Ei oltu sitten samoilla linjoilla. Eka on helpompi, irrallinen pohdiskelu vain.

Tokassa auttaako jos määrittelen että takanjalka on C ja muokattuna sitten D? Silloin A, B ja D ovat keskenään samaa kategoriaa.
200. Jaska25.12.2015 klo 22:33
Toka ja samalla vika yritykseni, varmaan taas vikayritys.

1. turkis

2. A arina, B rosti, D uuninpohja
201. Matti25.12.2015 klo 22:37
Sananjalka on saniainen, takanjalka on takiainen.
202. Matias-Myyrä25.12.2015 klo 22:49
Eräällä tavalla pohdiskeltuna makean vastakohta voisi olla kepeä.
203. Jaska25.12.2015 klo 22:52
Aijuu, tokahan se oli sanaleikkipohjalta ratkottava. Matilla siis tod.näk. osuma.
204. Juhani Heino25.12.2015 klo 23:04
Jep, Matti ratkaisi - hienoa! Ei tarvinnut antaa edes jatkovihjettä, että satanjalka ja puutanjalka muokkaantuvat eri kategoriaan.

Matias-Myyrä on käsittääkseni lähellä, mutta ihan tuota en vielä hakenut.
205. Matias-Myyrä25.12.2015 klo 23:19
Myös tiara voisi olla makean vastakohta.
206. Jaska25.12.2015 klo 23:27
Tuskin tiara, eihän minunkaan papukaijahakuni kelvannut.
207. Matias-Myyrä25.12.2015 klo 23:40
Kolmas yritys: makean vastakota on pistetulo!
208. Jaska25.12.2015 klo 23:50
Oma kaivannee ei ihan luotisuoraa lisuketta:

Ylkä piiritti Matin!!
209. Antti26.12.2015 klo 09:59
Minkä Raamatun paikan nimi merkitsee iloa, mielihyvää?
Kenen profeetan nimi merkitsee kyyhkystä?
Kenen profeetan nimi merkitsee halausta?
Kenen profeetan nimi merkitsee "Luokse Herran"?
210. Jaska26.12.2015 klo 11:28
Täyttä hepreaa...
211. Tarja26.12.2015 klo 12:04
Joona tarkoittaa kyyhkystä.
212. Antti26.12.2015 klo 12:04
Niin on myös "Beit lechem", leipätalo
ja "Jeeshuua", Vapahtaja, Pelastaja

ja teki mieli näin joulun aikaan tuollaisia kysyä.
213. HT26.12.2015 klo 12:39
Paikka on Eeden ja halaus liittyy Habakukiin.

Joonan ja Eedenin tiesin, Habakuk piti kaivaa netistä. Viimeiseen kysymykseen pitää odottaa vastausta täältä.
214. Antti26.12.2015 klo 13:42
Hyvä HT.

Elia ei merkitse "Jumalani on Herra", vaikka useimmat niin kääntävät, vaan merkitsee "Luokse Herran", jonne Elia jo eläessään meni.

"Eli" ei merkitse "Jumalani" (=Eeli), vaan merkitsee "luokse" (runollinen "el"-sanan muoto).
215. HT26.12.2015 klo 14:00
Elia jäi hoksaamatta kun haeskelin vain niiden joukosta, joilla on oma kirja.

Nimen merkityksestä ollaan näemmä tosiaan useampaa mieltä. Wikipedia heittää tuollaisen tulkinnan:

The name Elia is broken in two parts: El( Hebrew Jewish G-d "Elohim YHWH") and IA(means from). Elia means from G-d.
216. Jaska26.12.2015 klo 18:16
Juhani Heinon ilmoitusta odotellessa perun puheeni ja arvaan vastakohdan kolmannen kerran. Jos Matias-Myyrän kepeä oli lähellä, niin yhtä hyvin SUTIA. Olettaen, että tänäisen vastakohta on eilinen tai huominen.
217. Juhani Heino28.12.2015 klo 11:31
Ehkä pitäisi jo antaa vastaus, mutta kokeillaan vielä rajaamista. Ei minkäänlaista sanaleikkiä, vastaus on ihan suora. Sori jos kommenttini Matias-Myyrän kepeästä johti harhaan, läheisyys oli sisällössä eikä ke-alussa.
218. ake28.12.2015 klo 12:02
Suora vastaus olisi vaikkapa kuiva.
219. Juhani Heino28.12.2015 klo 16:28
Aivan oikein! Tuossa merkityksessä vastakohta on selkeä, mutta makujen tapauksessa sellaista ei ole.
220. Jaska28.12.2015 klo 17:40
Kyllä nyt on häväisty olo. Maailman röyhkeämpi petkutus Juhani Heinolta.

Positiivinen seuraamus kuitenkin, että oma takajalkatehtäväni (9) ei voi enää jäädä ratkomattomaksi uudelleen muotoillun lisävinkin ansiosta:

YLKÄ PIIRITTI AKENKIN!
221. Jaska4.1.2016 klo 21:44
Eipä näytä kukaan keksineen ratkaisua. Radikaali pehmennys tai ainakin keskennys sen keksityttäisikö:

SULHO PIIRITTI KEKSIN (9)
222. Jukkis4.1.2016 klo 22:24
Missä on "ilman risteäviä" -tapio silloin kun häntä tarvitaan?
223. ake4.1.2016 klo 22:35
Voiskohan Jaskalla olla RAHAKANTA?
224. Jaska4.1.2016 klo 22:43
RAHAKANTA on oikea ratkaisu. Akelle kuitenkin epävarmuuden johdosta vain kaksi kolmannesta täysistä pinnoista. Kuka naarii kolmanneksen avaamalla knopin?
225. Jukkis4.1.2016 klo 22:50
Sulho Ranta, keksi = haka.
226. Jaska4.1.2016 klo 23:17
Jukkis tiesi ristikoissakin ei äärimmäisen harvoin esiintyneen Sulho Rannan. Myös Bangladeshin rahayksikkkö taka on monille ratkojille tuttu.
227. ake4.1.2016 klo 23:32
Minä myös tiesin nuo molemmat, mutta se jalka sai minut vähän epäröimään...
228. Juhani Heino8.12.2016 klo 19:29
Mistä sanakikkailusta on kyse?
&Juha .
229. Jaska8.12.2016 klo 21:39
Et Juhani ole täysipäinen.
230. Juhani Heino8.12.2016 klo 23:43
Noin varmaan moni toteaa, se ei kuitenkaan vielä ole ratkaisu.
231. Juhani Heino10.12.2016 klo 23:45
Laitetaan rinnakkaisvihje:
&Jukka .
232. Juhani Heino15.12.2016 klo 11:43
Vielä rinnakkaisvihje:
&Helvi .
233. Matias-Myyrä15.12.2016 klo 12:01
Hep. En paljasta ratkaisua, mutta siinä on 17 kirjainta.
234. Juhani Heino15.12.2016 klo 12:03
Täsmää.
235. ponkka15.12.2016 klo 13:27
Ehkäpä myös &Jorma kelpaisi rinnakkaisvihjeeksi.
236. ponkka15.12.2016 klo 13:30
Korjataanpa hiukan: &Jorma .
237. Jaska15.12.2016 klo 22:09
Sipilöitä kaikki, mutta mitään vitsikästä kikkialua ei kehkeydy.
238. ++juh15.12.2016 klo 22:49
Hep. Minäkään en paljasta ratkaisua, mutta keskimmäinen kirjain on V.
239. Juhani Heino16.12.2016 klo 14:10
Kyllä vain. Ja Jorma käy vihjeeksi ainakin Wikipedia-kriteerillä, Sipilöistä on kyse.
240. Jaska18.12.2016 klo 22:39
Munanmuotoinen ällistynyt seppä (10)
241. ++juh20.12.2016 klo 00:42
Jaskalla Äimärautio.

Juhanin Sipilä-sanakikkailutehtävän vinkki (rot-13-koodattuna):
Invuqn grugäiäffä wbgnva wn yhr fr cvyxhagnexnfgv ääarra. Xvewbvgn cncrevyyr, zvgä fnabvg. Fr ba engxnvfh.
242. Jaska20.12.2016 klo 12:45
Äimärautio (vrt. Pollea) oikein. Raviradan kaviouran etukaarre on loivempi kuin takakaarre, kavioura on siis lintuperspektiivissä lähellä munan muotoa.
243. Jaska20.12.2016 klo 13:15
Ei vaan aukene, mitä pitää vaihtaa. Siis kun tästä "et Sipilä väli piste" kikkaillaan eli vaihdetaan jotain, ehkä kirjaimia tai kirjainten järjestystä, pitäisi syntyä jotain tarkoitteellista, jossa v on yhdeksäs kirjain. Luovutan, ellei parin tunnin happilenkillä valkene.
244. Juhani Heino20.12.2016 klo 14:37
Tuo "et Sipilä väli piste" on täsmälleen oikein, eli ++juhin ohjetta ei enää tarvita. Luulisin että ideakin valkenee, ellei edestakaisella lenkillä niin pian kuitenkin.
245. Jaska20.12.2016 klo 17:36
No voi pahonen aika. Hoksasin palindromin jo ennen Juhani Heinon eestaasvihjettä, mutta ++juhin harhaohjeen "muuta jotain" johdosta en tajunnut sen olevan ratkaisu sellaisenaan.
246. Juhani Heino20.12.2016 klo 19:46
Palindromihan se.
247. Jaska20.12.2016 klo 22:07
Ja ++juh viittasi siihen tarkoittaen muutoksella lukusuuntaa. Piti vaan purnata, kun ärsyttää oma vajakkius.
248. Juhani Heino22.12.2016 klo 15:24
Mistä on kyse, kun logossa on:
dy

Hieman pitää vielä viilata tarkkaan ottaen, mutta se saa jäädä mahdolliseksi lisävinkiksi.
249. Ari5.1.2017 klo 08:03
Netissä olevilla laitteilla on kaikilla eri IP-osoite, eli kahdessa eri laitteessa ei ole samaa. No, Mikolla oli äsken tietty IP-osoite mutta kohta se olikin irakilaisen Yadimin puhelimessa. Mitä oli tapahtunut?
250. Ari5.1.2017 klo 08:26
Onko Yadim mahdollisesti hakkeri?
251. Juhani Heino5.1.2017 klo 12:22
Laitetaan lisävinkkiä - pahoittelut pitkästä tauosta, sivusto tunki jotain mainosta mutta vika saattoi olla selaimissani. Kumma vain että kaikissa, ja pelkästään sanaristikot.netin kohdalla. Logon kirjaimet ovat ympyrän sisällä. Arin kysymyksessä on ainakin se mahdollisuus, että IP-osoitteita annetaan dynaamisesti DHCP:llä. Jos Mikko lopetti käyttämisen ja osoitteista oli pulaa, Mikolla ollut IP kierrätettiin Yadimille.
252. Jukkis5.1.2017 klo 14:04
Semmoinen viisastelu tuohon Arin juttuun, että netissä on varmaan satoja miljoonia laitteita, joiden kaikkien IP-osoite on 127.0.0.1. Ja aika paljon sellaisia, joiden kaikkien IP-osoite on esim. 192.168.0.1, tai 192.168.100.1.
253. Ari5.1.2017 klo 15:39
Hyvä,tietoa näemmä löytyy. Wikipedian mukaan osoite vaihtuu kun laite käynnistetään uudelleen, mutta itsekin epäilen että Juhani on oikeassa. Jukkis, tuopa mielenkintoista. Minkälaisia laitteita ne on joissa voi olla sama osoite? Pelkästään lähettäviä, vai?
254. Jukkis5.1.2017 klo 15:45
127.0.0.1 = local. Eli kun millä tahansa tietokoneella menee osoitteeseen 127.0.0.1, niin menee sille samalle koneelle. Noilla 192-alkuisilla pääsee sille Ethernet- tai WLAN-reitittimelle, jonka kautta oma kone on yhteydessä verkkoon.
255. Ari5.1.2017 klo 16:23
Ok, oli se sitten viisastelua. :D
256. Tarja17.1.2017 klo 12:08
Mistä on kysymys?
- näin kuvitelmaa muslimissa
- nähin vaihtoehto
- siron vaihtoehto, jos pesona
- mitta miehessä
- k-lintu kauppaketjussa väärinpäin
- näyttelijätär golfpallon alustassa
- pellon lahjoittaisin ilman siniä
257. eol17.1.2017 klo 12:31
Tarjan tehtävän kirjainmäärä: (yht. 60)
258. ake17.1.2017 klo 15:39
Tarjalle hep minultakin.
259. Jaska17.1.2017 klo 19:04
604800 s
260. Matias-Myyrä17.1.2017 klo 21:21
Hep!
261. Tarja22.1.2017 klo 13:53
Kaikki halukkaat ovat varmaankin jo tehtäväni ratkaisseet. Kyse oli tietysti viikonpäivistä. Laitan varmuuden vuoksi vielä ratkaisun tähän.
- sunn-unta-i
- lau(r)an-tai (Laura Närhi)
- perjan-tai (siro=sorja, so>pe)
- torst-a-i
- kesk-iviik-k-o
- ti-ista-i
- maan-antai(sin)
262. Matias-Myyrä9.3.2017 klo 10:10
Mikä eläin? (14 kirjainta)
Se sanoi kikikyy.
263. Matias-Myyrä9.3.2017 klo 21:22
Helpotetaan vähän.
Ei ole anagrammi, vaikka kirjainmäärästä voisi niin luulla.
Siis eläin ei sanonut "kikyy", vaan "kikikyy".
264. ponkka9.3.2017 klo 21:37
Arvelen, että tehtävän imperfektimuoto on olennainen juttu.
265. Matias-Myyrä9.3.2017 klo 21:56
Sillä imperfektillä on tietty tarkoitus.
266. ake9.3.2017 klo 22:01
Minä voisin jo sanoa hep!
267. Matias-Myyrä9.3.2017 klo 22:03
Mainiota, ake!
268. eol10.3.2017 klo 08:48
Ratkaisussani esiintyy kaikkiaan 8 eri kirjainta.
269. Matias-Myyrä10.3.2017 klo 08:53
Kyllä, 8 eri kirjainta on oikeassa ratkaisussa.
270. Tarja10.3.2017 klo 09:09
Ratkaistu.
271. Matias-Myyrä10.3.2017 klo 17:05
Vieläkö joku haluaa miettiä tätä?
Kuka tahansa saa kertoa ratkaisun tänä iltana klo 21 jälkeen, ellei joku sitä ennen pyydä lisäaikaa tehtävän miettimiseen.
272. Matias-Myyrä10.3.2017 klo 21:52
Vastaus on MAALAISKIAINEN.
Urbaanit talitiaiset laulavat nykyisin usein "tityy", mutta maalaistiainen laulaa vielä "titityy".
Konsonantinmuunnoksella T->K saadaan siis ratkaisu.
Imperfekti tuli siitä, että maalaiskiaiset ovat kuolleet sukupuuttoon ja eivät siis enää ääntele.
273. Tarja23.3.2017 klo 16:03
Mikä kadunnimi? Vihje: ÄTES (6)
274. Matias-Myyrä25.3.2017 klo 16:27
Itätie
275. Tarja25.3.2017 klo 16:42
Itätie oikein (setä > ei täti).
276. eol25.3.2017 klo 18:24
Tässä haetaan kolmea sellaista palloilujoukkuetta, joista kukin on tällä vuosituhannella voittanut Suomen mestaruuden täsmälleen kerran:

NOHEVA
LAITAVA
SÄPIT
277. ake25.3.2017 klo 21:51
Eka on Lappeenrannan VEITERÄ, kolmas on Porin PESÄKARHUT.
278. eol25.3.2017 klo 23:09
Veiterä ja Pesäkarhut oikein. Annetaan vielä puuttuvalle keskimmäiselle kirjainmäärä:

LAITAVA (6)
279. Tarja25.3.2017 klo 23:19
Lait(t)ava > kat(t)aja, siis Joensuun Kataja
280. eol25.3.2017 klo 23:43
Myös Kataja oikein: kaikki kolme on nyt ratkaistu. - Mestaruus miesten jääpallossa meni Veiterälle nyt 2017, miesten koripallossa Katajalle 2015 ja naisten pesäpallossa Pesäkarhuille 2002. (Näistä kolmesta ainoastaan Veiterällä on mestaruuksia myös 1900-luvulta: 1951, 1955, 1957 ja 1980.)
281. Matti26.3.2017 klo 17:44
Mistä nuo Veiterä ja Pesäkarhut tulevat??
282. eol26.3.2017 klo 18:06
Lappeenrannasta ja Porista (niin kuin ake tuossa eilen klo 21:51 tuli maininneeksikin).
283. Tarja26.3.2017 klo 18:22
Olisi fiksua laittaa selitys vihjeille (kuten Katajan kohdalla tein) ilman että joka kerta täytyy pyytää erikseen sitä rautalangasta vääntämään.
284. 26.3.2017 klo 18:22
Ja anatomiaa: Sekä "noheva" että "veiterä" tarkoittavat nokkelaa tai näppärää (tms.). Supi taas on sama kuin pesukarhu, joten "säpit" > "pesäkarhut".
285. Matti26.3.2017 klo 20:34
No onpas konstikasta. Mutta ok, kiitos!
286. Ari28.6.2017 klo 07:59
Kiireessä kaksi vihannesta. (5 ja 6)
287. Tarja28.6.2017 klo 10:17
Hep.
288. ake28.6.2017 klo 12:08
hep hep
289. Ari10.1.2018 klo 20:00
Erään laitteen hyötysuhde on normaalisti n. 6%, mutta voi otollisissa olosuhteissa nousta jopa 95%:iin. Mikä tuo laite on?
290. Tarja10.1.2018 klo 22:11
Aivot?
- No ei sentään ;)
291. Jaska10.1.2018 klo 22:26
Ei hassumpi arvaus, ovathan aivot sähköinen laite, jonka kaikkea kapasiteettia ei kuulemma ole mahdollista hyödyntää. Yläraja voisi hyvinkin olla 95%, mutta alarajan luulisin olevan nolla. Ainakin minulla!
292. ++juh10.1.2018 klo 23:13
Kymmenen prosentin myytti

http://www.skepsis.fi/ihmeellinen/kymmenen_prosent in_myytti.html
293. Matti11.1.2018 klo 01:40
Joo, ihan mielenkiintoinen juttu. Vaan miten on nämä prosentit laskettu? Mistä ja mikä on kuusi sadasosaa? Ja mikä on mittayksikkö?
294. Ari11.1.2018 klo 08:43
Mielenkiintoinen juttu tuo, mutta en hakenut aivoja vaan jotakin paljon yksinkertaisempaa laitetta.
295. Jukkis14.1.2018 klo 18:13
Kun tätä ei kukaan keksi, niin kerro, mitä tarkoitat. Tai jotain vinkkiä.
296. Ari14.1.2018 klo 20:44
Tuo laite on ollut joka kodin ja paikan laite mutta nykyään sen valmistus on lopetettu juuri huonon hyötysuhteen vuoksi. Edelleen kuitenkin käytössä suurimmassa osassa talouksia.
297. Waari14.1.2018 klo 20:54
Hehkulamppu.
298. Tarja14.1.2018 klo 20:55
Hehkulamppu
299. Ari15.1.2018 klo 08:23
Kyllä! Tarvitseeko selittää?
300. Jukkis15.1.2018 klo 08:38
Tarvitsee, mm. siksi kun kyllähän hehkulamppuja edelleen valmistetaan.
301. Ari15.1.2018 klo 09:34
Joskus kun ne myivät hehkulamppuja sen kiellon jälkeen, ymmärsin että vanhaa varastoa saa myydä mutta ei saa valmistaa uusia. Olin siis ilmeisesti väärässä, sori, Jukkis, tästä.
302. Jukkis15.1.2018 klo 10:25
Uunilamppu on hehkulamppu. Hehkulamppuja myydään antiikkilampun nimellä.

Tuota mahdollista 95 % hyötysuhdetta voisit hiukka selittää.
303. Ari15.1.2018 klo 10:28
Hehkulampun tehosta n. 90% menee lämmöksi, mutta talvella sisällä lämmitetyssä tilassa sekin tulee hyödyksi. Myös uunissa.
304. Jukkis15.1.2018 klo 10:42
No juu, niinpä tietysti. Meneeköhän helteellä hyötysuhde negatiiviseksi, jos lampun lämmön takia ilmastoinnin vaatima viilennysteho kasvaa?
305. Tarja22.1.2018 klo 10:33
Mitä erityistä on luvuissa 879 ja 426?
306. Tarja22.1.2018 klo 14:05
Tänään muuten onnittelemme kaikkia Visa-nimisiä, kuten meteorologi Visa Salojärveä ja elokuvaohjaaja Visa Mäkistä.
307. Jaska22.1.2018 klo 15:14
Esimerkiksi
879 + 798 + 987 = 2664
426 + 264 + 642 = 1332
2664/1332 = 2, mutta parittain eivät jaot mene tasan.
308. Jukkis22.1.2018 klo 17:00
Jaskan laskema suhde (nyt siis 2) on sama kuin noiden alkuperäisten lukujen numeroiden suhde. Nyt (8+7+9)/(4+2+6)=2. Tuollaisia lukupareja on aika monta, joten eipä noissa kahdessa luvussa tässä mielessä mitään kovin erityistä ole. Lienee joku muu erityisyys haussa?
309. Tarja22.1.2018 klo 17:05
Joo, muu erityisyys on haussa.
310. Jukkis22.1.2018 klo 17:06
... siis ei "alkuperäisten lukujen numeroiden suhde" vaan "alkuperäisten lukujen numeroiden summien suhde".
311. Ari22.1.2018 klo 18:57
4 2 ja 6 ovat kolme ensimmäistä parillista numeroa ja 8 7 ja 9 viimeiset kolme numeroa kymmenjärjestelmän yksittäisistä numroista. ±o)
312. Tarja25.1.2018 klo 11:15
Eipä taida tulla enempää arvauksia, joten kerron ratkaisun.
Kun luvut lasketaan yhteen, saadaan 879 + 426 = 1305.
Erityisyys on siinä, että tällöin jokaista numeroa (siis 0,1,2,3,4,5,6,7,8,9) on käytetty täsmälleen yhden kerran.
313. Jaska25.1.2018 klo 13:47
Ratkaisu oli siis sittenkin matemaattinen, ja vieläpä yksinkertainen. Ihan hyvä hoksaustehtävä, vaikka ei olekaan uniikki po. ratkaisuehdolla.
314. Jukkis25.1.2018 klo 13:59
No sitten Jaskalle ja muillekin lisätehtävä: Listaa kaikki kahden luvun yhteenlaskut, joissa esiintyy kaikki numerot, kukin tietysti vain kerran.
315. Matias-Myyrä25.1.2018 klo 15:01
Tekaisin pienen ohjelman, joka etsii tuommoisia tapauksia. Yllättävän paljonhan noita näkyy löytyvän.
316. Matti25.1.2018 klo 15:10
Hauska tehtävä. En hoksannut.
317. Matias-Myyrä25.1.2018 klo 15:47
En vanno, että ohjelmani löysi kaikki mahdolliset, mutta se listasi 84 kpl lukupareja, jotka täyttävät em. ehdon.
318. Matias-Myyrä25.1.2018 klo 16:58
26+4987=5013 ; 27+4986=5013 ; 34+5978=6012 ; 34+5987=6021 ; 37+5984=6021 ; 38+5974=6012
43+5978=6021 ; 47+2968=3015 ; 48+2967=3015 ; 48+5973=6021 ; 56+1978=2034 ; 56+1987=2043
57+1986=2043 ; 58+1976=2034 ; 64+2987=3051 ; 65+1978=2043 ; 67+2948=3015 ; 67+2984=3051
68+1975=2043 ; 68+2947=3015 ; 73+5948=6021 ; 74+5938=6012 ; 75+1968=2043 ; 76+1958=2034
78+1956=2034 ; 78+1965=2043 ; 78+5934=6012 ; 78+5943=6021 ; 84+2967=3051 ; 84+5937=6021
86+1957=2043 ; 86+4927=5013 ; 87+1956=2043 ; 87+2964=3051 ; 87+4926=5013 ; 87+5934=6021
246+789=1035 ; 249+786=1035 ; 264+789=1053 ; 269+784=1053 ; 284+769=1053 ; 286+749=1035
289+746=1035 ; 289+764=1053 ; 324+765=1089 ; 325+764=1089 ; 342+756=1098 ; 346+752=1098
347+859=1206 ; 349+857=1206 ; 352+746=1098 ; 356+742=1098 ; 357+849=1206 ; 359+847=1206
364+725=1089 ; 365+724=1089 ; 423+675=1098 ; 425+673=1098 ; 426+879=1305 ; 429+876=1305
432+657=1089 ; 437+589=1026 ; 437+652=1089 ; 439+587=1026 ; 452+637=1089 ; 457+632=1089
473+589=1062 ; 473+625=1098 ; 475+623=1098 ; 476+829=1305 ; 479+583=1062 ; 479+826=1305
483+579=1062 ; 487+539=1026 ; 489+537=1026 ; 489+573=1062 ; 624+879=1503 ; 629+874=1503
674+829=1503 ; 679+824=1503 ; 743+859=1602 ; 749+853=1602 ; 753+849=1602 ; 759+843=1602
319. Jaska25.1.2018 klo 19:01
Kaikki summat ovat kolmella jaollisia, ja 30:n summan molemmat yhteenlaskettavat ovat niin ikään kolmella jaollisia. Täytyy joskus studeerata kolmella jaottomia yhteenlaskettavia.
320. Matias-Myyrä25.1.2018 klo 21:21
Mikä ihmeen luonnonlaki määrää, että nolla menee aina tuohon summaan eikä yhteenlaskettaviin?
Miksi summassa on aina nolla, yksi kolmella jaollinen ja kaksi kolmella jaotonta numeroa?
Miksi seiska ei ole kertaakaan summassa?
Matematiikassa on kummallisia lakeja.
321. Jukkis25.1.2018 klo 21:46
Tein kanssa ohjelman. Löytyi samat 84.

Seuraavaksi sitten kaikki mahdolliset summat, siis summattavia voi olla myös enemmän kuin kaksi.
322. Matias-Myyrä25.1.2018 klo 22:00
Niin, mahtavatkohan nuo omituiset lait olla voimassa, kun summattavia on enemmän?
323. Matias-Myyrä25.1.2018 klo 22:07
Kolmella summattavalla löytyy toista tuhatta. Summan kolmella jaollisuus näyttäisi olevan edelleen voimassa.
324. Matias-Myyrä25.1.2018 klo 22:20
1932 kpl tuli kolmella summattavalla.
325. Matias-Myyrä25.1.2018 klo 22:24
Jos yksi kolmesta summattavasta saa olla nolla, löytyy vielä 168 kpl lisää.
326. Matias-Myyrä25.1.2018 klo 22:41
Neljällä summattavalla 360 kpl ja summan kolmella jaollisuus on edelleen voimassa.
327. Matias-Myyrä25.1.2018 klo 22:53
Tuli niitä neljällä 1116 kpl. Mulla oli ohjelmassa virhe.
328. Jaska25.1.2018 klo 23:14
Alkuperäisten 84:n summattavissa ei siis esiinny lainkaan nollaa, sen sijaan 7 esiintyy aina jommassakummassa. Nolla ei esiinny summan viimeisenä numerona, joten kahden summattavan viimeisten nueroiden summa ei ole koskaan 10, vaan 7, 8, 9, 11, 12, 13, 14, 15 tai 16. Jne.
329. eol25.1.2018 klo 23:38
Konjektuuri: Summa on aina jaollinen jopa 9:lläkin, riippumatta summattavien määrästä. (Ks. engl. Wikipedia "digital root" ja suom. Wikipedia "Jaollisuus".)
330. Jaska25.1.2018 klo 23:50
Ja tietysti summattavien numeroiden ja summan numeroiden summa on yhdeksällä jaollinen, onhan kymmenjärjestelmän numeroiden summa 45.
331. Jaska26.1.2018 klo 18:36
84:ssä summassa erilaisia on 17 kpl, joista 13 kpl esiintyy neljä kertaa ja 4 kpl kahdeksan kertaa.

4 kertaa:1026, 1035, 1053, 1062, 1206, 1305, 1503, 1602, 2034, 3015, 3051, 5013, 6012
8 kertaa: 1089, 1098, 2043, 6021
332. Jaska9.3.2018 klo 12:30
Mihin liittyvät luvut 311, 2227, 856, 523, 670, 587, 583?
333. Jaska10.3.2018 klo 10:49
En viitsi roikottaa enempää edellistä, koska ihan plääh. Ratkaisuksi riittänee 333.
334. Tarja10.3.2018 klo 22:19
Ei riitä. Ainakaan minulle. Olisi kiva tietää, mistä oli kysymys.
335. Jaska10.3.2018 klo 23:43
Eiliset 255:n viestin ylittävien säikeiden viestien lukumääriä ilman pistettä ennen 12:30 näkyvissä olleilla sivuilla. 333. tilanne tänään 10:49 tässä säikeessä.
336. Tarja7.5.2021 klo 09:42
Mitä sellaista yhteistä on helmikuulla ja toukokuulla, ettei sitä ole muilla kuukausilla?
337. Jaska7.5.2021 klo 10:32
Helmillä ja Toukolla on nimipäivä almanakassa.
338. Tarja7.5.2021 klo 11:00
Just noin. Molempien nimipäivät ovat toukokuussa, Helmin tänään, 7.5. ja Toukon 24.5.
339. Matti12.7.2021 klo 18:10
Kevyt kesäpähkinä: Jäykkä homogeeninen lipputanko (pituus l=20m) kaatuu ilman alkunopeutta maahan pitkin pituuttaan siten, että tyvipiste pysyy kaiken aikaa paikallaan.
a) Millä nopeudella tangon nuppi osuu maahan?
b) Nyt vain nuppi irtoaa tangosta ja putoaa alas. Millä nopeudella nuppi nyt osuu maahan?
340. Ari12.7.2021 klo 20:46
b) Kun tanko on kaatunut ja murskannut nupin juuren, tanko jatkaa matkaa, mutta nuppi ei enää juurikaan putoa. Saattaa jopa nousta ylöspäin maan palautuessa.
341. Jaska12.7.2021 klo 22:12
b) samalla nopeudella, ainakin melkein:)
342. eol13.7.2021 klo 01:16
Tangon pituus l on siis tunnettu. Oletetaan, että nupin massa on mitätön verrattuna koko tangon massaan. Merkitään haettua nupin loppunopeutta v:llä.

a) Tässä tapauksessa hitausmomentti J = 1/3 * M * l^2 (suht helppo laskea / hakea lähteistä), missä M on koko tangon massa. Siten lopussa pyörimisenergia E_r = 1/2 * J * w^2 = 1/6 * M * l^2 * w^2, missä lopullinen kulmanopeus w = v / l. Toisaalta alussa koko tangon potentiaalienergia E_p = 1/2 * M * g * l, missä putoamiskiihtyvyys g = 9,8 m/s^2. Merkitään E_r = E_p, jolloin saadaan v = sqrt(3 * g * l).

b) Nyt lopussa liike-energia E_k = 1/2 * m * v^2, missä m on nupin massa. Toisaalta alussa nupin potentiaalienergia E_n = m * g * l. Merkitään E_k = E_n, jolloin saadaan v = sqrt(2 * g * l).

Vastausten suhde on siis sqrt(3/2) eli riippumaton l:stä.
343. Jukkis13.7.2021 klo 09:40
Illalla laskin b-kohdan ilman energioita. Tippuvan nupin nopeus = gt, sen kulkema matka = (1/2)gt^2. Ajan sqrt(2l/g) kuluttua törmää maahan, nopeus sillä hetkellä = g*sqrt(2l/g) = sqrt(2lg).

a-kohdassa kaivoin esille tangon hitausmomentin lausekkeen, sitten tuli väsy. Mutta noinhan se menee kuin eol:llä.
344. Jukkis13.7.2021 klo 09:45
Tämmöinen helppo. Suklaatehtaassa kuusi konetta tekee 200 g painoisia suklaalevyjä. Todetaan, että joku koneista tekeekin 195 g painavia levyjä. Miten saadaan yhdellä punnituksella selville, mikä koneista on viallinen, kun käytössä on tarkka vaaka, jolla voi punnita asioita 3 kg asti?

Koska on helppo, niin ei ihan heti vastausta, ehkä joku muukin haluaa keksiä itse.
345. Jaska13.7.2021 klo 10:46
Hep, jos yksi punnitus tarkoittaa, että punnittavat levyt pitää panna kerralla vaakaan.
346. Jukkis13.7.2021 klo 11:13
Sullako on termille "yksi punnitus" joku muukin määritelmä, ja jos noudatat sitä määritelmää, et enää osaakaan vastata pähkinään?
347. Jaska13.7.2021 klo 13:53
Joo, on toinen määritelmä. Asetetaan vaa'alle yksi levy ja sitten lisätään yksi levy kerrallaan. Silloin tulee jokainen levy punnituksi yhden kerran. Myös niiden yhteispaino tulee punnituksi yhden kerran. Sitten poistetaan levyt vaa'alta ja uusitaan toimenpide. Se on toinen punnitus.

Nyt jokainen täysin utamikin pähkinänsärkijä tietää, että ko. ratkaisumalli on kielletty.
348. Matti13.7.2021 klo 13:54
Jukkikselle hep.
349. Elva13.7.2021 klo 16:31
Jukkis, hep.
350. Matti13.7.2021 klo 22:47
Lipputankotehtävän 339 ratkaisu menee juuri niin kuin eol esittää, 342.
351. eol13.7.2021 klo 23:28
Jukkikselle täältäkin hep.

Jatkokysymys (eli eräänlainen yleistys): Entäpä jos alunperin onkin tiedossa vain, että kyseisiä 5 grammaa alipainoisia suklaalevyjä tuottavia koneita on kaikista 6 koneesta vähintään X ja enintään Y kappaletta. Jotta kaikki vialliset koneet saataisiin nyt tunnistettua yhdellä ainoalla punnituksella, niin mikä vaa'an maksimikapasiteetin pitää olla, eli kuinka monta suklaalevyä sen pitää kerralla pystyä punnitsemaan?

Tarkoitus on siis löytää kutakin eri kokonaislukuparia X, Y vastaava maksimikapasitetti c(X, Y), missä Y kuuluu joukkoon {1, 2, ..., 6} ja X joukkoon {0, ..., Y}. Maksimikapasiteetit lienee selvyyden vuoksi hyvä ilmoittaa suklaalevymäärinä - ei kilomäärinä.

Toiveena on, että ei hepiteltäisi. Vastauksia voi kuitenkin hyvin antaa tipoittain, eli yhdellä kerralla vain osalle (vaikkapa vain yhdelle) kaikista lukupareista X, Y. Esimerkki: Jukkiksen alkuperäisen tehtävän ratkaisun avulla lienee helppoa löytää c(1, 1).

(Periaatteessa tehtävä olisi tietysti edelleen yleistettävissä kuuden koneen tapauksesta mielivaltaiselle konemäärälle, mutta se jääköön tällä kertaa tekemättä. Oletetaan siis, että koneiden määrä on alkuperäinen 6.)
352. eol13.7.2021 klo 23:47
P. S. Edellä olisi vaa'an "maksimikapasiteetin" sijasta selvempää yksinkertaisesti puhua vaa'alta edellytettävästä kapasiteetista, jota siis merkitään c(X, Y).
353. Jaska14.7.2021 klo 11:10
Kapasiteetti vähintään 41 levyä, kun tiedetään yksi tai kaksi konetta viallisiksi.
354. Jaska14.7.2021 klo 11:33
Tuli päässälaskuvirheitä. Palataan asiaan.
355. Jaska14.7.2021 klo 11:54
Korjaus: vähintään 48 levyä.
356. Jukkis14.7.2021 klo 12:05
Mä sain c(1,2) = 42.
357. Jukkis14.7.2021 klo 12:35
Eikun c(1,2) = 46.
358. eol14.7.2021 klo 12:52
Minä saan saman kuin Jukkis eli c(1, 2) = 46.
359. Jaska14.7.2021 klo 12:59
Laskin alusta alkaen pyrkien äärelliseen huolellisuuteen. Kolmasti tsekattu tulokseni on 39. 15 yli 2 summaksi sain 195. Missä olen tehnyt päättelyvirheen?
360. Ari14.7.2021 klo 13:00
Luuleeko joku, että oikeasti noin laskettaisiin todellisessa tilanteessa? Kyllä siinä otettaisiin joka linjalta levy tai pari ja punnittaisiin ne konekohtaisesti. Tässä täytyy myös huomioida vaa-an tarkkuus.
361. Jaska14.7.2021 klo 13:08
Hokasin sen ite. En heti tullut tsekanneeksi 5*-tuloja, niistä löytyi pari päällekkäisyyttä.
362. Jaska14.7.2021 klo 13:13
Ari, ymmärsit kai, että kyse on teoreettisesta tilanteesta. Kun sen tiedät, voit laskeskella muita eolin laajennustehtävän tapauksia.
363. Jukkis14.7.2021 klo 13:13
Ari, sun lähestymistapa näihin pähkinöihin on kyllä aika pöljä.
364. Jukkis14.7.2021 klo 13:41
Sain kenties c(1,3) = 52.
365. Ari14.7.2021 klo 14:02
Mullako pöljä? Realistinen, sanoisin.
366. eol14.7.2021 klo 14:15
Jukkis, minä saan c(1, 3):lle suuremman arvon kuin 52. Haluatko kertoa, mitä konekohtaisia suklaalevymääriä käytät punnituksessa?
367. Jukkis14.7.2021 klo 14:25
Ja oliskohan c(1,4) = 62. Onko eol:lla samoja?
368. eol14.7.2021 klo 14:31
Kyllä minullakin c(1, 4) = 62.
369. Jukkis14.7.2021 klo 14:41
Korjattu c(1,3) = 58.
370. eol14.7.2021 klo 14:44
Joo, samoin minulla c(1, 3) = 58.
371. Jukkis14.7.2021 klo 14:58
Ari sitten mielellään ratkaisee saman tehtävän ilman säälittävän epärealistista yritystä sijoittaa matemaattinen tehtävä johonkin idealisoituun elävän elämän tilanteeseen. Ole hyvä:

On kokonaisluvut X ja Y, kumpikin välillä [1,6] niin että Y on suurempi tai yhtäsuuri kuin X. Etsi kuusi positiivista kokonaislukua a, b, c, d, e ja f niin, että kun noista kuudesta valitaan mitkä tahansa N eri lukua, jossa N saa kaikki arvot välillä [X,Y], niin jokainen N:n luvun summa on erisuuri. Lisäksi vaaditaan, että a+b+c+d+e+f on mahdollisimman pieni. Tehtävän vastaus c(X,Y) on tuo summa a+b+c+d+e+f.
372. Ari14.7.2021 klo 15:08
Pyrin ratkomaan sellaisia pulmia, jonka tuloksesta on jokin hyöty, en vain ajankuluksi. Eläkeaikaankin on vielä vuosia, että jos silloin ei ole mitään tekemistä niin... ;-)
373. Jukkis14.7.2021 klo 15:45
Saattaisko olla että c(1,5) = c(1,6) = 63?
374. eol14.7.2021 klo 16:18
Saattaisihan se, ainakin minä saan nuo samat.

Tuota tehtävälle antamaasi pelkistetyn matemaattista määritelmää voisi vielä laajentaa niin, että kokonaislukuväli [1, 6] pidennetään väliksi [0, 6] (vaikka anomaalinen tapaus X=Y=0 ei alkuperäiseen määritelmääni sisältynytkään).
375. eol14.7.2021 klo 16:50
... ja jos vielä oikein hiuksia halotaan, niin "positiivista" voisi olla "ei-negatiivista".
376. Jaska14.7.2021 klo 18:43
Nyt kai voi jo 46-jakauman paljastaa: 1, 2, 4, 7, 12, 20
377. Jukkis14.7.2021 klo 20:17
Näyttäis olevan c(2,2) = 32.

Eipä tässä oikein enää muuta kiinnostavaa taida olla kuin se, että onko c(X,Y):lle olemassa yleinen lauseke. En kyllä keksi, miten sellaisen saisi aikaan.
378. eoln14.7.2021 klo 21:50
Kyllä minusta c(2, 2) on erisuuri kuin 32.

Näyttäisi siltä, että jonkinlaista yleisempää kaavaa c(X, Y):n laskentaan olisi löydettävissä. Täytyy vielä katsoa.

Annan vielä aikaa ylihuomiseen pe klo 22 asti. Siihen mennessä olen varmaan saanut taulukoitua omat tulokseni c(X, Y):n kaikille 28 eri argumenttiparille. - Halukkailla on sitä ennen(kin) mahdollisuus esittää omia tuloksiaan, ja heillä on myös mahdollisuus ilmoittaa toivovansa minun tulosjulkaisuni myöhentämistä.
379. Jaska14.7.2021 klo 22:32
c(2, 2) = 36. Suurin levymäärä 15.
380. eol14.7.2021 klo 23:08
c(2, 2) ei minusta ole 36:kaan.
381. Jaska14.7.2021 klo 23:41
Jaa. Se tuntuikin liian helpolta. Täytyy huomenna etsiä vaikeampia variantteja.
382. eol14.7.2021 klo 23:54
Suklaalevypunnitusteorian peruslause:
c(X, Y) = c(6-Y, 6-X)

Tuosta seuraa suoraan se, että kaikista 28 erilaisesta c(X, Y):n argumenttiparista on oleellisesti keskenään erilaisia vain 16.
383. eol15.7.2021 klo 00:52
Suklaalevypunnitusteorian toinen lause:
jos Y > 1, niin c(0, Y) = c(1, Y)

Esimerkki: Yllä havaittiin, että c(1, 5) = c(1, 6). Tämä tulos on tässä vaiheessa helppo johtaa toisen lauseen ja peruslauseen avulla: c(1, 5) = c(0, 5) = c(6-5, 6-0) = c(1, 6).
384. Jukkis15.7.2021 klo 08:30
Taitaakin olla c(2,2) = 33.
385. Ari15.7.2021 klo 10:34
Jukkiksen tehtävään 344 jatkokysymys: miten tarkka tuon tarkaksi mainitun vaa-an tulee olla?
386. eol15.7.2021 klo 10:37
Vahvasti olen sitä mieltä, että c(2, 2) ei ole mikään vielä mainituista kolmesta vaihtoehdosta, jotka siis ovat 32, 36 ja 33.

Pitäisikohän tässä nyt ensin löytää / saada eksplisiittisesti esille helpohkot c(0, 0), c(1, 1) ja c(0, 1). Kun sitten lisäksi ratkaistaan mielestäni mielenkiintoisimmat tapaukset c(2, 2) ja c(3, 3), niin sen jälkeen "oleellisesti" puuttuisivat enää c(2, 3) ja c(2, 4).
387. Jaska15.7.2021 klo 10:47
Nyt en tajua, miksi en eilen tajunnut. Siis c(2, 2) minimiä. Se on roimasti pienempi kuin 32.
388. Jukkis15.7.2021 klo 11:55
Eli olisko se c(2,2) = 26?
389. Jukkis15.7.2021 klo 11:57
Vastaus Arille: Kuten tehtävässä sanotaan: tarkka. Ihan pöljää ruveta tuollaista miettimään tämäntyylisen pähkinän yhteydessä.
390. Jukkis15.7.2021 klo 13:25
Nyt sain että c(4,4) = 24. Jolloin eol:n esittämän suklaalevypunnitusteorian peruslauseen mukaan pitäisi olla myös c(2,2) = 24. Mutta kun en millään keksi, miten tuon c(2,2) =24 saisi aikaan, kun en alle 26:n pääse. Joten enköhän nyt jää odottelemaan eol:lta suklaalevypunnitusteorian täydellistä esitystä.
391. Jaska15.7.2021 klo 13:44
Jukkis, tulokseni on 22.
392. eol15.7.2021 klo 14:07
Minun löytämäni tulos on c(2, 2) = 26 kuten Jukkiksellakin.

Sen sijaan tuloksiin c(4, 4) = 24 [Jukkis] ja c(2, 2) = 22 [Jaska] en ole tähän mennessä päässyt. Listaatteko, miten kokoonpannuilla vaakakuormilla nämä tulokset saadaan.
393. Jukkis15.7.2021 klo 14:17
No nyt sain c(2,2) = c(4,4) = 26.
394. eol15.7.2021 klo 14:27
Ok, Jukkis - suklaalevypunnitusteoria ei näin ollen ainakaan vielä romuttunut.

Listaatko siis, Jaska, tosiaan minkälaisella vaakakuormalla saadaan niin hyvä tulos kuin c(2, 2) = 22.
395. Jukkis15.7.2021 klo 15:05
Eka yritys antaa c(2,3) = 51.
396. eol15.7.2021 klo 15:59
Saman c(2, 3) = 51 minäkin olen saanut.
397. Jukkis15.7.2021 klo 16:54
Sitkun vielä sain että c(2,4) = 60, niin jos tuo on oikein, niin vissiin kaikki c:t on selvillä?
398. Jaska15.7.2021 klo 17:37
Lenkillä totesin taas minulle tyypillisen numerosokeuden. 22 oli väärin.
399. eol15.7.2021 klo 18:10
Pidetään siis voimassa c(2, 2) = 26.

Minun laskujeni mukaan c(2, 4) on kyllä pienempi kuin tuo 60.

Vielä puuttuu lisäksi c(3, 3), joka mielestäni on kaikista näistä ehkä mielenkiintoisin / yllättävin suhteessa muihin. Ja suht helpot c(0, 0), c(1, 1) ja c(0, 1) ovat nekin kirjaamatta ylös. (Muut vielä käsittelemättömät saadaan johdettua SLP-teorian avulla.)
400. Jaska15.7.2021 klo 18:19
No niin, suihkun jäähdyttämin aivoin onnistuin konstruoimaan jonon 1, 2, 4, 7, 12, yht. 26. Se sokeusjononi oli 1, 2, 4, 5, 10. En siis tajunnut, että 1 + 4 = 5.
401. Jaska15.7.2021 klo 19:25
Olisikohan osa eolin c(3, 3) yllätyksestä 7, 10, 12, 13, 15, 17, 18, 20, 21, 23?
402. Jukkis15.7.2021 klo 19:33
Näköjään jo aiemmin tänään oon saanut c(3,3) = 27.
403. eol15.7.2021 klo 20:09
Hyvä, että saatiin tuo tulos c(3, 3) = 27 myös julki. Se on siis vain yhtä suurempi kuin c(2, 2) = 26, vaikka erilaisia kahden koneen kombinaatioita on kaikkiaan (6 yli 2) = 15 mutta kolmen koneen kombinaatioita (6 yli 3) = 20. Sitten taas c(2, 2) puolestaan on paljon suurempi kuin c(1, 1).

Nyt en taida hahmottaa Jaskan listaaman jonon 7, 10, 12, 13, 15, 17, 18, 20, 21, 23 merkitystä?
404. Jaska15.7.2021 klo 20:32
Jonossani 401. ovat jonon 400. 5 yli 3 summat. Eli ratkaisu on 26. Mutta mielestäni minimi on vielä selvästi pienempi. Yritän Porin jälkeen löytää taas soken pisteeni.
405. eol15.7.2021 klo 21:00
Tuohon Jaskan listaamaan c(2, 2)-jonoonhan ei ole merkitty mukaan kuudennen koneen implisiittistä 0:aa. Eli ?jono voidaan ?esittää myös muodossa 0, 1, 2, 4, 7, 12. Tapaukseen c(3, 3) tämä sama jono ei aivan sovellu, koska 2+4+7 = 0+1+12.
406. Jaska15.7.2021 klo 22:23
Ei jaksanut tuotakaan aatoksella tsekata. Ekan simppelin jälkeen kaikki yritykset pieleen ekalla ja tokalla jne kerralla. Tehtävä kyllä erittäin kiinnostava.
407. Jukkis16.7.2021 klo 10:50
Varmaankin c(0,0) = 0 ja c(1,1) = c(0,1) = 15.

Mutta en kyllä millään ilveellä keksi, miten c(2,4):n saisi alle 60:n.
408. Jaska16.7.2021 klo 12:46
Jukkis, oletko tsekannut tämän 59 (kun olen itse just lähdössä) 0, 1, 2, 4, 7, 15, 30.
409. Jaska16.7.2021 klo 12:48
Huh, nolla pois.
410. Jukkis16.7.2021 klo 13:04
Ei toimi, koska 1+2+4+15 = 7+15
411. eol16.7.2021 klo 15:09
Edelleenkin minun laskemani c(2, 4) on pienempi kuin 60. No, kuten keskiviikkona jo lupasin, niin olen julkaisemassa tänään joskus klo 22 jälkeen kootusti kaikki omat tulokseni, mukaanlukien tarkat vaakakuormakokoonpanot. Viimeistään sen jälkeen pystyttäneen helposti korjaamaan mahdolliset virheet, olivatpa ne kenen tahansa.

Todellakin c(0, 0) = 0. Mutta c(0, 1) on kyllä erisuuri kuin c(1, 1) = 15. (Tämä "poikkeustapaus" on otettu huomioon SLP-teorian toisen lauseen sanamuodossa.)

P.S. Jo ennen iltakymmentä pyrin postaamaan myös jonkinlaiset todistukset keskiviikkona esittämilleni kahdelle SLP-teorian lauseelle. Ne todistukset eivät ole pitkiä.
412. Jukkis16.7.2021 klo 16:22
Niin joo, eiköhän c(0,1) = 6. Vai?
413. Jukkis16.7.2021 klo 16:32
Eikun eihän tuolla saada selville, mikä se kevyempi on. Eipä nyt ajatus kulje.
414. Jukkis16.7.2021 klo 16:34
Jolloin kai sitten c(0,1) = 21?
415. eol16.7.2021 klo 17:53
Kyllä, c(0, 1) = 21.
416. Jaska16.7.2021 klo 18:02
En siis pikaistuksissa huomannut, että 1 + 2 + 4 = 7. Kohta lenkillä kylläkin. Seiskan sijaan siis kasi, ja vika numero korkeintaan29, jotta summa voisi olla edelleen alle 60. Kotiin tultua listasin kaikki 25 summakombinaatiota luvuista 1, 2, 4, 8, 15:

3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29.

Erilaisia näkyvät olevan, ellei ynnäysvirheitä. Koska pienin kombinaatio on 3, pitää kuudennen luvun olla 30 - 3 = 27. Joten c(2, 4) ratkaisu on 57. Menikö oikein?
417. Jukkis16.7.2021 klo 18:06
Tuota noin, 1 + 27 = 1 + 4 + 8 + 15.
418. Jaska16.7.2021 klo 19:33
Ei siis mennyt, mikä oli odotettavissa. Mutta jos 15:n sijaan 16 tai yli, ei 60:n alitus enää onnistu? Eli myös 8 on pielessä. Varmasti oikein ovat siis vain 1, 2, 3. Ei ole nyt aikaa enempiin kokeiluihin, joten ootellaan eolin ratkaisua.
419. Jaska16.7.2021 klo 19:34
Huoh, 1, 2, 4
420. eol16.7.2021 klo 21:59
Alla siis kootut tulokseni - loput c(X, Y)-arvot saadaan näistä alla olevista 11:stä niiden jo mainittujen kahden lauseen avulla, joiden todistukset ikävä kyllä jäävätkin huomiseksi.

c(0, 0) = 0 (0 0 0 0 0 0)
c(0, 1) = 21 (1 2 3 4 5 6)
c(1, 1) = 15 (0 1 2 3 4 5)
c(1, 2) = 46 (1 2 4 7 12 20)
c(1, 3) = 58 (1 2 4 8 15 28)
c(1, 4) = 62 (1 2 4 8 16 31)
c(1, 5) = 63 (1 2 4 8 16 32)
c(2, 2) = 26 (0 1 2 4 7 12)
c(2, 3) = 51 (1 2 4 7 13 24)
c(2, 4) = 59 (1 2 4 8 15 29)
c(3, 3) = 27 (0 1 2 4 7 13)
421. Jaska16.7.2021 klo 22:58
Tsekkasin Jukkiksen oikaisun jälkeen vielä 28 ja 29 vikana numerona. Ei kumpikaan natsannut, eli kaiken kukkuraksi onnistuin laskemaan oikeankin ratkaisun vääräksi.
422. Jukkis17.7.2021 klo 09:27
Nyt kun katselen tuota Excel-taulukkoani, jolla näitä selvittelin, niin en ollenkaan tajua, miksi en todennut, että c(2, 4) = 59 (1 2 4 8 15 29), vaan jotenkin käsittämättömästi katsoin, että viimeinen luku pitää olla 30. Hellettä varmaan voi tästäkin sujuvasti syyttää.
423. eol17.7.2021 klo 14:22
SLP-teorian peruslauseen
c(X, Y) = c(6-Y, 6-X)
todistus:

Lähdetään liikkeelle määritelmästä. (Koneen "laatu" tarkoittaa sitä, tuottaako se kevyitä vai raskaita tuotevariantteja.)

Määritelmä M1. c(X, Y) = K tarkoittaa että jos 6 koneesta vähintään X ja enintään Y tuottaa 5 grammaa *kevyempiä* tuotteita kuin muut koneet, niin kaikkien koneiden laadut saadaan tunnistetuksi yhdellä ainoalla punnituksella jos ja vain jos vaa'an kapasiteetti on ainakin K kertaa raskaamman tuotevariantin paino.

Symmetrian perusteella M1 on yhtäpitävä seuraavan M2:n kanssa.

Määritelmä M2. c(X, Y) = K tarkoittaa että jos 6 koneesta vähintään X ja enintään Y tuottaa 5 grammaa *raskaampia* tuotteita kuin muut koneet, niin kaikkien koneiden laadut saadaan tunnistetuksi yhdellä ainoalla punnituksella jos ja vain jos vaa'an kapasiteetti on ainakin K kertaa raskaamman tuotevariantin paino.

Itsestäänselvästi M2 taas on yhtäpitävä seuraavan M3:n kanssa.

Määritelmä M3. c(X, Y) = K tarkoittaa että jos 6 koneesta vähintään 6-Y ja enintään 6-X tuottaa 5 grammaa *kevyempiä* tuotteita kuin muut koneet, niin kaikkien koneiden laadut saadaan tunnistetuksi yhdellä ainoalla punnituksella jos ja vain jos vaa'an kapasiteetti on ainakin K kertaa raskaamman tuotevariantin paino.

Todistettava lause saadaan nyt hyvin helposti vertaamalla määritelmiä M1 ja M3.
424. eol17.7.2021 klo 15:35
SLP-teorian toisen lauseen -
jos Y > 1, niin c(0, Y) = c(1, Y)
- todistus:

Oletetaan, että Y > 1, ja että 6 koneesta on viallisia vähintään 1 ja enintään Y. Tarkastellaan sellaista minimaalista vaakakuormakokoonpanoa, jolla pystytään tunnistamaan kaikkien koneiden laadut ja johon siis kuuluu kaikkiaan c(1, Y) tuoteyksilöä.

Tehdään hetkeksi lisäoletus, että tuossa vaakakuormassa tietyn koneen A kiintiö olisi 0 tuotetta. Otaksutaan sitten, että punnitus antaa viallisten koneiden määräksi Y-1. Tällöin emme kuitenkaan vielä voisi tietää mitään koneen A laadusta, mikä on ristiriita, joten lisäoletuksemme mukainen vaakakuorma osoittautui mahdottomaksi.

Siten vaakakuormassamme kunkin yksittäisen koneen tuotekiintiö on vähintään 1. Tämä merkitsee, että täsmälleen sama vaakakuorma soveltuu siihenkin tapaukseen, jossa viallisten koneiden vähimmäismäärä onkin 0. Silloin ainoa uusi sallittu tapaus vastaa sitä punnitustulosta, että vaakakuorman kaikki tuotteet ovat normaalipainoisia.
425. eol19.7.2021 klo 16:38
Tässä vielä bonustehtävä viime viikon punnituksista. (Vastauksen voi antaa suoraan, hepitystä ei tarvita.)

Etsi perjantaisessa taulukossa [420. eol 16.7.2021 klo 21:59] listatun 11 c(X, Y)-arvon joukosta sellainen, johon päästään ainakin kahdella erilaisella vaakakuormakokoonpanolla. Mitkä ovat kyseiset X ja Y, ja millaiset ovat kyseiset keskenään erilaiset vaakakuormat?
426. Jukkis20.7.2021 klo 18:52
Eipä enää jaksa tuota pohtia.

Mutta minä tuolle aiemmin pohdin että "onko c(X,Y):lle olemassa yleinen lauseke". Johon eol että "Näyttäisi siltä, että jonkinlaista yleisempää kaavaa c(X, Y):n laskentaan olisi löydettävissä. Täytyy vielä katsoa."

Ei sellaista tainnut sitten löytyä?
427. eol20.7.2021 klo 21:27
Ehkä yleisempiä kaavoja kuin nuo jo samana iltana esittämäni 2 lausetta - mutta tuskin ihan heti *yleistä* kaavaa! - voisi yrittää konstruoida, mutta se nähdäkseni vaatisi formalismin oleellista laajentamista.

Ovathan jo nuo 2 lausettakin sikäli näppäriä, että niiden avulla tutkittavien eri c(X, Y)-tapausten määrä käytännössä väheni 28:sta 11:een. (Jos Y kuuluu joukkoon {0, 1, ..., 6} ja X joukkoon {0,1, ..., Y), niin mahdollisia pareja (X, Y) on kaikkiaan 28.)

Esimerkki formalismin laajentamisesta: Otetaan käyttöön merkintä c[N](X, Y), missä koneiden määrä onkin kiinteän 6:n sijasta mielivaltaisesti valittava N. Nyt näyttäisi minusta äkkiseltään lupaaavalta sen suhteen, että pystyttäisiin todistamaan seuraava lause:
c[N+1](X+1, X+1) = c[N](X, X+1)

P.S. Paljastan eilisen bonustehtävän vastauksen ylihuomenna torstaina klo 21. - Tehtävä ei viime perjantaisen taulukon myötä liene liian vaikea. Kun esimerkiksi tulokseen c(1, 1) = 15 päästään vaakakuormalla (0, 1, 2, 3, 4, 5), niin vaikuttaa aika selvältä, että tässä tapauksessa mikään muu yhtä vähän painava vaakakuorma ei riitä kaikkien koneiden luokitteluun.
428. Juhani Heino21.7.2021 klo 01:44
Tässä tarvitaan muutakin kuin matematiikkaa. Pyydän vastauksena lisäystä listojen lukupareihin - jos lähettää vain toiseen, silloin pitäisi mainita kumpi lista.
Lista A:
121, 324
81, 484
10000, 10404
225, 729
324, 529
62001, 64009

Lista B:
81, 225
1600, 1764
3600, 3844
441, 784
1, 361
81, 841
429. Jaska21.7.2021 klo 12:43
Tuli mieleen, että Juhani Heinolla on todennäköisesti valmius ratkaista eolin duaalibonustehtävä 420. ennen huomenillaksi asetettua määräaikaa. Siinähän ei tarvita muuta kuin matematiikkaa, käytännössä suurimmaksi osaksi yhteenlaskua. Muut ovat ymmärtääkseni luopuneet.
430. Juhani Heino21.7.2021 klo 23:49
Tulin kesken mukaan enkä jaksanut lukea kaikkea, joten olen voinut ymmärtää jotain pahasti väärin. Mutta kävisikö tällainen?
c(2, 3) = 51 (1 2 4 7 14 23)
431. eol22.7.2021 klo 00:05
Ei aivan, sillä 4+7+14 = 2+23. (Tässä tapauksessahan siis tiedetään ennalta, että kuudesta koneesta viallisia on vähintään 2 ja enintään 3.)
432. Jaska22.7.2021 klo 11:40
Alkuperäisessä on siis 4+7+13 = 24 ja 2+24 = 26. Jos muuttaa alkuperäisen kahden suurimman luvun +1 ja -1 niin kuin JH teki, pitää jokaisen lukuparin erotuksen olla vähintään 3. Jos kokeilee +2 ja -2, vastaavan erotuksen pitää olla vähintään 5 jne. Asian tsekkaamista helpottaa, jos on taulukoinut kaikki alkuperäiseen kuuluvat summakombinaatiot. Oletan näet, että duaali piilee haarukassa 46-63.

Tsekkauksineen ja tsekkauksien tsekkauksineen homma vaatii niin monituntisen urakan, että minäkin jäin odottamaan valmista ratkaisua
433. Jaska22.7.2021 klo 14:10
Täsmennän. JH:n tapauksessa ko. erotus ei saa 2, jos +2 ja -2, se ei saa olla 4 jne.
434. eol22.7.2021 klo 21:10
Maanantaina hakuun panemani viime perjantain taulukkoon liittyvä duaali on jälkimmäinen seuraavista:

c(1, 2) = 46 (1 2 4 7 12 20)
c(1, 2) = 46 (1 2 4 8 13 18)
435. Jaska22.7.2021 klo 23:14
Oikea oli olettamukseni.
436. Juhani Heino23.7.2021 klo 15:04
Omaan tehtävääni ei ole ollut joko kiinnostusta tai vielä ahaa-elämystä. Uskaltaudun laittamaan vielä jatkoa.
Lista C:
400, 900
25, 625
900, 1024
16, 144
3969, 4096
437. Jaska23.7.2021 klo 19:23
Neliöitä ja niiden kerrannaisia. Jos sitten vaikkapa C:tä syynäilisi.
438. Jaska24.7.2021 klo 09:07
Toista tuntIa tuijoteltu tuloksetta. Myös A ja B neliöitä. Kantaluvuista ei apua. Pahis. Ilman vinkkiä siitä muusta turhaa työtä. Englannin kieli se ei tällä kertaa liene.
439. Juhani Heino24.7.2021 klo 13:48
Jep, neliöitä ovat kaikki. Näyttää vähän samalta kuin taannoinen tehtäväni, Enempää vinkkiä en toistaiseksi anna.
440. eol24.7.2021 klo 14:33
Katosikos tuo mainittu taannoinen "vähän samalta näyttävä" tehtävä tämän sivuston helmi-maaliskuisen häiriön yhteydessä (?). Nyt ei ikävä kyllä ainakaan juuri tällä hetkellä enää muistu mieleeni, mistä siinä tehtävässä tarkkaan ottaen olikaan kyse, mutta neliöön korotukset siinäkin taisivat olla oleellisessa osassa.
441. Juhani Heino24.7.2021 klo 16:53
Näin on tosiaan tainnut käydä. Siinä tehtävässä neliöiden ero oli 1000, ja porukalla laajennettiin isompiinkin "pyöreisiin" erotuksiin.
442. Jukkis26.7.2021 klo 11:06
Minä kanssa olen tuota JH:n pähkinää yritellyt, aika lailla laatikon ulkopuolella oleskellen. Ei lähde.
443. Jaska26.7.2021 klo 11:42
Ei lähde, koska ei löydy vedintä. Siis sitä muuta kuin matematiikka. Ei kannata pähkäillä ennen kuin narunpää on tarjolla.
444. Jaska26.7.2021 klo 11:43
P.S. Roomalaiset numerot se ei tällä kertaa ole.
445. Matti26.7.2021 klo 18:23
Joo, ei irtoa.
446. Jukkis26.7.2021 klo 19:27
Minä mm. kirjoitin nuo luvut ja niiden neliöjuuret kirjaimin, siis esim. seitsemänsataakaksikymmentäyhdeksän ja kaksikymmentäseitsemän ja katselin niiden kirjainmääriä. Mutta eipä niistä mitään järkevää saa irti.
447. Juhani Heino27.7.2021 klo 01:32
Ehkä on sitten aika terävöittää vinkkiä, jonka aiemmin laitoin mitenkään osoittelematta. Ratkaisu löytyy juuri erotuksien kautta.
448. Jaska27.7.2021 klo 11:22
C.n erotukset tuli päässälaskettua heti esittelyssä. Ne eivät ole suuruusjärjestyksessä. Jatkossa paljastui, että B on nousevassa suuruusjärjestyksessä, samoin A neljän ekan osalta. En kekannut niiden merkitystä.

Nyt JH:n vahvistusvinkin ja uuden tuijottelun jälkeen A:n 403 vaikutti jotenkin tutulta. Peugeot! Netistä löytyi sen verran lisäosumia, että voi olettaa kaikkien olevan Peugeotin tyyppinumeroita. Automiehet olisivat asian hokanneet alta aikayksikön. Arvaan niiden olevan aikajärjestyksessä. Nyt ei ole kuitenkaan aikaa eikä energiaa etsiä vaadittuja jatkoja.
449. Jukkis27.7.2021 klo 11:47
B:t on Volvoja ja C:t Fiateja. Aika mainio.
450. Juhani Heino27.7.2021 klo 13:41
Aivan oikein! Järjestys oli suunnilleen se jossa löysin ko. merkkien Wikipedia-sivuilta, ja koetin ottaa tunnetuimmat, siis ne joista mäkin olen kuullut vaikken autoharrastaja olekaan. Ns. Pyhimys-Volvoa en ottanut koska sen nimessä oli vielä PV (personvagn) mukana - näissä oli pelkkiä numeroita.
451. Jaska27.7.2021 klo 16:16
Entä jatkot?
452. Jukkis27.7.2021 klo 17:59
Ihan pakko vielä tulla kehumaan tätä pähkinää ja sen esittäjää. Oli kyllä mahtavasti rakennettu. Ei voi muuta sanoa kuin hattua nostaa.
453. Jaska27.7.2021 klo 18:37
Samaa mieltä, mutta ratkaisutkin olisi kiva tietää. Kai ne ovat JH:lla valmiina, kun kerran jatkoparit ratkaisuiksi pyydettiin.
454. eol27.7.2021 klo 20:04
Lisäesimerkkejä Juhani Heinon tehtävään:
Lista A: 95481, 100489
Lista B: 1, 961
Lista C: 25, 1225
455. Jukkis27.7.2021 klo 21:34
Jos on automallinumero N, niin että N = x*y, niin haetut luvut on yhtälöparin
a+b = x
a-b = y
ratkaisujen a ja b toiset potenssit, mikäli a ja b ovat kokonaislukuja.

Esim. Stalin 1200:
1200 = 30*40.
a+b = 30
a-b = 40
Josta a = 35, b = -5, joten luvut ovat 1225 ja 25

Toinen ratkaisu: 1200 = 20*60, josta luvuiksi 1600 ja 400.
456. Jaska27.7.2021 klo 22:41
Mitä erikoista on luvussa 144?
457. Ari27.7.2021 klo 22:48
Jaska, se on minun aikanaan tekemäni älykkyystestin tulos.
458. Jaska27.7.2021 klo 23:21
Sanotaan varmuuden vuoksi, että sivuaa JH:n tehtäviä.
459. Juhani Heino27.7.2021 klo 23:34
Kiitos Jukkikselle taas kehuista. Jatkoja en enää pyytänyt, kun ratkonta venähti näin pitkäksi muutenkin. Eol:ltä löytyi tosiaan Peugeot 5008, Volvo 960 ja Fiat 1200 (jolla ei ole mitään tekemistä Lada 1200:n kanssa).
Pyysitkö Jaska tosiaan vastauksia listaani? Siinähän olivat Peugeot't 203, 403, 404, 504, 205 ja 2008,
Volvot 144, 164, 244, 343, 360 ja 760
sekä Fiatit 500, 600, 124, 128 ja 127.
Laskeminen menee Jukkiksen näyttämällä tavalla - lisähuomiona vielä että vastaus löytyy parittomille ja 4:llä jaollisille luvuille. Pois jäävät 2:lla mutta ei 4:llä jaolliset, eli noin neljäsosa luvuista.
460. Juhani Heino27.7.2021 klo 23:42
Jaskan 144 on tietysti monellakin tapaa erityinen, esim. tusina tusinaa eli krossi. Mutta heitetään nyt neliöihin liittyvä: luvun numerotkin ovat kaikki neliöitä.
461. Juhani Heino27.7.2021 klo 23:49
Vielä tuli mieleen, että 12*12 = 144 ja 21*21 = 441.
462. Jaska28.7.2021 klo 11:15
eolin 464. olivat niitä JH:n alkuperäisiin kuulumattomia, joita tarkoitin. En viitsinyt itse niitä haeskella, joten kiitos eolille.

144:lläkin on tosiaan useita ominaisuuksia, joten 458. oli vinkkinä liian sumea. Tarkoittamani oli, että 144 on muotoa kahden neliön erotus on niin ikään neliö. Lisäksi se on pienin, joka on neljän neliöparin erotus.

Mikä on pienin neliö, joka on kahden neliön erotus?
463. eol28.7.2021 klo 12:54
Kun "neliöt" rajataan positiivisten kokonaislukujen neliöiksi, niin 9 = 3^2 = 5^2 - 4^2.
464. Jaska28.7.2021 klo 13:19
Joka on myös pienin pythagoralainen. Ne ovat siis ko. oukon osajoukko.
465. Juhani Heino28.7.2021 klo 13:30
Tuosta juolahti jatkokysymys: mikä on pienin neljän neliöparin erotus, jos sen itsensä ei tarvitse olla neliö?
466. eol28.7.2021 klo 13:42
Kun jälleen "neliöt" rajataan positiivisten kokonaislukujen neliöiksi, niin tarjoan 96 = 2^5 * 3.
467. Juhani Heino28.7.2021 klo 13:44
Tuohon mäkin päädyin, mutta en ole tarkistanut löytyisikö parempaa. Parittomilla ei tuntunut pääsevän pienempään.
468. Jaska28.7.2021 klo 19:06
Jos parittomia erotuksia on enemmän kuin yksi, niitä on aina pariton lukumäärä. Niitä on perin harvassa. Pienin on 225 (3 kpl).
469. eol28.7.2021 klo 19:36
Jaska edellisessään ilmeisesti rajaa käsittelyn tapauksiin, joissa neliöiden erotus on itsekin neliö. Parittomalle neliölle 225 eri neliöiden erotuksia löytyy kuitenkin nähdäkseni kaikkiaan 4 (ei siis vain 3):
113^2 - 112^2
39^2 - 36^2
25^2 - 20^2
17^2 - 8^2
470. eol28.7.2021 klo 19:43
P.S. Jos erotuksen ei tarvitse olla neliö, niin 225:tä pienemmäksi parittomaksi nelinkertaiseksi neliöiden erotukseksi löydetään 105.
471. Jaska28.7.2021 klo 21:19
Joo, Pythagoraan lumoissa olin edelleen.
472. Matti29.7.2021 klo 20:26
Hieno tehtävä Juhani Heinolta. Minulta vaan tuppaa menemään sormi suuhun, kun siirrytään boxin ulkopuolelle. Vaikka siihen suoraan vihjattiin.
473. Juhani Heino30.7.2021 klo 01:35
Kiitos Matillekin. Uutta varsinaista tehtävää ei ole, mutta laitanpa näytille jotain mitä olen itse pohtinut.
OEIS:n jonoon A003558 todistin että se liittyy tällaisiin jonoihin ABUD2(y) (add backwards until divisible), esim.
ABUD2(13) = 1, 13, 7, 10, 5, 11, 8, 4, 2, 1, 13...
7 tulee, koska 13 ei ole jaollinen kahdella vaan siihen lisätään edellinen 1 - nyt on jaollinen ja jaetaan sillä 2:lla. Toka 13 taas tulee, koska 1 ei ole jaollinen kahdella vaan pitää mennä aina 11:een asti jolloin summaksi tulee 26.

On siis todistettu, että ABUD2(n) palaa alkuun jokaisella positiivisella kokonaisluvulla. Sama näyttää tietokonekokeilujeni perusteella toimivan muillakin jakajilla, mutta en ainakaan osaa todistaa sitä. Taas esimerkki:
ABUD3(13) = 1, 1, 13, 5, 6, 2, 9, 3, 1, 5, 2, 11, 6, 2, 7, 3, 1, 10, 7, 6, 2, 5, 10, 5, 5, 9, 3, 1, 6, 2, 3, 1, 2, 1, 1, 13...
Alussa on nyt kaksi ykköstä varmistamassa että saadaan kolmella jaollinen. Ja nyt toka 13 tulee koko summasta lähtien sitä edeltävästä 1:stä ja päättyen vierekkäisiin viitosiin - kun ne on otettu, saadaan 39.

Vaikuttaa siltä, että väliluvut eivät ikinä ole isompia kuin lähtöluku. Jos tämä pitää paikkansa, käy järkeen että jossain vaiheessa palataan alkuun koska voi yhdistellä vain rajallisesti. Toki alkuun saattaisi päätyä vaikka löytyisi isompiakin lukuja.
474. Jaska30.7.2021 klo 11:37
Isompia löytyy. Alku 1, 1, 3 = 15 on myös viidellä jaollinen, joka siis ehdoksi.

1, 1, 13, 3, 1, 1, 1, 4, 2, 5, 6, 4, 2, 5, 6, 6, 8, 4, 7, 5, 6, 6, 11, 7, 6, 6, 6, 5, 6, 15....

Alkaen luvusta 13 löytyy 60:stä luvusta vielä 15 kpl isompia kuin 13, suuriin 69. Jätän jatkon halukkaille tietokoneitse laskeville.
475. eol30.7.2021 klo 13:17
Mitenkäs tuo Jaskan jono on itse asiassa määritelty? Ellen ole ymmärtänyt ABUD-jonojen määritelmää väärin, eikös nimittäin ole niin että

ABUD5(13) = 1, 1, 1, 1, 13, 3, 4, 4, 5, 1, ...
476. Juhani Heino30.7.2021 klo 15:44
Eol:llä meni oikein, Jaskalla jo 3:n jälkeinen 1 on pielessä, ilmeisesti jaettu 3:lla eikä 5:llä johon pitää "hakea kauempaa".
477. eol30.7.2021 klo 15:56
Ja jos käsipelillä tekemäni laskut menivät oikein, niin ABUD5(13):n koko sykli on seuraava:

ABUD5(13) = 1, 1, 1, 1, 13, 3, 4, 4, 5, 1, 2, 7, 2, 5, 1, 3, 4, 3, 2, 1, 2, 1, 10, 2, 3, 1, 4, 1, 1, 2, 5, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 13, ...
478. Jaska30.7.2021 klo 17:20
Oli taas kiire olevinaan, ja niin syntyi taas yksi k-päinen jälkeläinen.
479. Jaska30.7.2021 klo 17:30
Sääntö lienee, että alkuykkösiä on jakaja miinus 1?
480. eol30.7.2021 klo 18:34
Merkitään tuota "jakajaa" k:lla.

Ymmärtääkseni alkuykkösiä voi ajatella olevan vaikka numeroituvasti ääretön määrä. ABUDk(y):ssä niistä "efektiivisiä" on kuitenkin korkeintaan k-1, minkä takia on tosiaan selkeintä merkitä niistä näkyville täsmälleen k-1 kappaletta.

On nimittäin selvää, että jos jonossa on sellainen k perättäisestä jäsenestä koostuva kohta, jonka k-1 ensimmäistä jäsentä ovat ykkösiä (ja viimeinen jäsen siis mahdollisesti jokin muu luku q), niin tätä kohtaa edeltävien jonon jäsenten lukuarvot eivät mitenkään vaikuta tämän kohdan jälkeisille jonon jäsenille laskettaviin lukuarvoihin (jotka siis määräytyvät yksin luvun q perusteella).
481. eol30.7.2021 klo 21:01
Lainaus: 479. Jaska 30.7.2021 klo 17:30
Sääntö lienee, että alkuykkösiä on jakaja miinus 1?

Vielä yhteenvetona minun oikeana pitämäni vastaus lyhyesti: Kyllä.
482. Jaska30.7.2021 klo 22:00
JH:n 473. vika kappale: "Toki voi löytyä suurempia". Kokeilin 13/k7: 1,1,1,1,1,1,13, 2, 3, 3, 3, 4, 7, 1, 3, 3, 7, 1, 2, 4, 7, 1, 2, 2, 10, 2, 2, 2, 3, 7, 1, 8, 3, 4, 7, 1, 15. Ei jos se meni oikein, on vastaus kyllä voi.
483. Juhani Heino30.7.2021 klo 23:41
Tuossa kohdassa 3,3,3,4 summa tulee jo 3+4 eli luvuksi 1.
Ja tosiaan noin, että alun ykkösiä riittää n-1. Yhtä hyvin alussa voisi olla vaikka kakkosia tai mitä tahansa lukua joka on keskenään jaoton (coprime) n:n kanssa. Mutta silloin summat yleensä sotkeentuvat ja jono degeneroituu muotoon joka sitten vasta alkaa toistua. Toimiva esimerkki jakajalla 3:
2, 2, 13, 5, 6, 2, 10, 4, 9, 3, 1, 9, 3, 1, 10, 8, 6, 2, 9, 3, 1, 5, 2, 12, 4, 6, 2, 4, 2, 2, 13...
Degeneroituva esimerkki:
2, 2, 1, 1, 2, 1, 1, 2...
484. Jaska31.7.2021 klo 10:35
Kato perhana, tälläsin seiskat näkyviin. Miksi? Muuthan menivät oikein. Vannon. että seuraavakin.
485. Juhani Heino1.8.2021 klo 00:10
Ahaa, tajusin. Mutta seiskan poistuttuakin ykkösen jälkeen tulee mielestäni kakkonen eikä kolmosta. (1+4+3+3+3=14)
486. Jaska2.8.2021 klo 20:52
Vielä pitää kysyä välilukujen pienemmyydestä. Onko se todistettu?
487. Juhani Heino3.8.2021 klo 00:31
Ei ole todistettu muissa tapauksissa kuin alkuperäisessä ABUD2:ssa.
488. Jaska3.8.2021 klo 12:26
OK, kiitos, sitten en tsekkaa enää seuraavaa 13/11 neljättä kertaa. 13:n jälkeen 127. luku on 12. Kertaalleen pikaisesti tsekatussa jatkossa 184, luku on 15.

1,1,1,1,1,1,1,1,1,1,13, 2, 2, 2, 2, 2, 3, 1, 3, 1, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 5, 1, 1, 1, 5, 2, 6, 2, 3, 1, 2, 2, 1, 3, 2, 1, 1, 3, 1, 2, 1, 1, 5, 4, 1, 1, 1, 2, 2, 1, 3, 3, 1, 1, 1, 1, 3. 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 4, 9, 2, 10, 4, 3, 3, 2, 2, 4, 4, 2, 5, 1, 5, 1, 2, 6, 2, 1, 1, 4, 2, 4, 1, 1, 2, 3, 1, 2, 2, 1, 1, 9, 1, 1, 1, 2, 12
489. Matias-Myyrä3.8.2021 klo 13:56
En löytänyt googlaamalla, että tätä olisi aikaisemmin kysytty.
Kenen sukunimi on etunimen synonyymin anagrammi?
490. Juhani Heino3.8.2021 klo 16:38
Mulla tuli tällainen jatko ABUD11(13):sta, alussa tietenkin ykköset ja 13:
2 2 2 2 2 3 1 3 1 3 1 2 1 1 2 1 1 2 1 1 5 1 1 1 5 2 6 2 3 1 2 2 3 1 2 1 1 3 1 2 1 1 5 4 1 1 1 2 2 1 2 6 1 4 1 2 2 4 2 1 1 3 1 2 3 1 1 1 2 1 1 3 6 1 1 1 2 1 2 2 6 1 1 3 1 2 2 5 4 1 3 2 3 2 1 1 2 1 3 3 1 1 1 4 3 6 2 1 2 1 2 2 3 1 1 4 1 3 5 2 1 1 2 1 2 2 1 5 1 1 3 1 1 2 2 1 1 1 2 1 1 1 3 1 1 1 1 6 7 2 2 1 2 2 2 1 3 1 1 3 1 4 5 4 2 1 2 2 1 2 3 1 1 3 1 1 3 5 5 3 2 3 2 3 3 1 2 1 3 3 4 1 1 2 1 2 1 2 5 1 1 4 1 2 2 1 1 1 2 4 1 6 1 2 4 2 2 1 1 3 2 1 3 1 1 1 2 1 4 6 1 1 2 3 2 2 1 1 1 3 3 1 6 3 4 2 2 1 2 1 2 3 1 4 1 1 3 4 2 1 1 1 2 1 2 3 1 1 1 1 4 1 2 1 1 1 1 1 2 4 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 2 1 10 1 1 2 2 2 2 5 1 3 1 3 2 4 4 3 1 2 3 2 1 2 1 1 3 3 1 1 5 3 5 2 3 3 2 3 1 2 1 2 1 3 4 1 1 4 3 2 1 1 1 2 3 3 1 1 1 1 3 3 7 3 3 2 2 3 3 3 1 3 3 3 4 3 3 3 2 1 2 1 2 1 2 1 4 1 1 4 1 1 2 5 2 1 1 1 3 2 3 1 1 1 1 2 1 3 7 1 1 2 1 2 2 2 1 1 1 4 1 3 1 1 1 1 2 4 7 1 2 3 2 2 4 1 2 1 3 1 2 4 1 1 2 1 1 3 2 1 1 1 5 3 1 1 1 1 2 2 1 2 1 1 1 1 1 3 1 1 8 5 2 2 2 1 2 2 1 3 1 4 1 4 4 2 1 1 2 3 2 1 5 1 2 1 4 2 4 1 1 2 3 1 2 5 1 2 1 1 3 2 4 1 1 1 2 1 3 2 1 1 1 1 4 3 1 1 1 1 1 2 3 8 1 2 1 2 2 2 4 1 1 3 1 3 2 1 1 1 2 1 1 2 1 6 1 1 1 4 2 2 1 1 1 1 2 3 1 7 1 2 1 1 2 2 2 1 1 5 1 3 1 1 1 2 2 1 1 2 1 1 1 1 3 1 1 1 7 6 2 2 3 2 2 1 3 1 2 1 3 1 1 2 1 1 4 5 1 1 1 2 3 2 6 1 2 1 3 2 2 1 1 4 3 1 5 2 1 2 1 1 2 2 1 4 1 1 1 3 1 1 2 6 5 1 2 2 3 2 4 1 3 3 1 2 4 3 4 1 2 3 3 2 1 1 3 3 3 1 1 1 2 1 2 1 2 1 1 1 1 4 1 1 7 2 1 1 1 2 2 2 1 6 1 3 1 1 2 2 4 5 1 3 2 1 2 2 1 1 2 1 4 1 5 1 1 2 4 2 5 1 2 3 1 2 2 1 1 3 4 1 5 3 2 1 1 2 2 1 2 1 5 1 4 1 1 2 2 1 1 2 5 1 5 1 2 2 1 1 2 2 1 1 3 1 1 1 3 1 1 1 2 1 1 1 1 2 1 1 1 1 7 1 1 1 1 1 2 2 2 1 1 1 1 1 1 3 1 9 4 2 2 2 3 2 1 3 1 3 3 1 1 2 1 1 2 1 2 1 1 1 5 1 1 6 2 5 2 2 1 3 2 3 1 4 3 1 2 1 1 2 3 4 1 1 1 3 3 2 1 1 1 1 2 1 2 1 7 1 1 4 2 2 5 2 1 3 1 2 2 1 4 4 1 4 2 1 2 4 2 1 4 1 2 3 1 1 2 4 1 2 1 1 1 3 2 1 1 6 3 1 1 1 2 2 3 6 1 3 3 2 2 1 1 2 1 2 1 3 1 1 1 4 1 1 2 1 1 1 1 2 5 1 1 1 1 1 3 2 8 3 1 2 2 2 3 4 1 3 1 2 1 2 4 4 1 1 3 2 1 2 5 3 1 1 3 2 3 5 3 1 2 1 2 2 1 2 1 1 4 1 4 1 1 1 2 4 2 1 1 1 1 3 2 1 7 3 1 1 2 2 2 1 2 1 1 1 3 1 4 1 1 1 1 2 1 1 2 7 1 1 1 3 2 2 6 3 1 3 2 2 1 2 1 1 2 1 3 1 1 5 1 1 2 1 1 1 2 2 1 1 1 6 1 6 2 2 1 1 2 2 3 1 5 1 3 4 2 4 3 2 1 3 2 1 2 1 4 3 1 1 4 2 1 2 1 1 1 2 3 1 1 6 1 2 1 1 1 2 2 4 1 1 1 1 3 1 2 7 4 1 2 2 2 1 2 4 1 3 1 1 3 2 1 1 2 1 1 1 2 1 5 1 1 1 1 4 2 7 2 1 3 2 2 3 1 1 2 1 3 1 2 1 1 1 4 4 1 1 1 1 2 3 2 1 1 1 1 1 3 3 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 2 11 1 2 2 2 2 2 1 1 3 1 3 1 5 4 4 2 3 2 1 2 3 1 2 1 4 1 2 1 1 4 2 1 1 5 2 1 5 2 3 1 1 2 2 1 3 5 1 4 3 2 4 2 1 2 1 3 2 1 4 1 1 2 1 4 2 1 1 1 4 2 1 6 2 1 4 2 2 1 4 2 1 3 1 1 2 3 1 1 2 1 1 1 3 5 1 1 1 1 2 1 2 2 1 1 1 1 1 4 1 8 2 1 1 2 2 2 3 1 1 1 3 1 3 6 4 3 2 2 1 2 3 3 1 4 1 2 1 2 1 1 2 4 1 1 5 1 2 5 2 4 1 2 2 1 3 2 1 1 3 1 1 2 1 5 5 1 1 2 2 1 2 2 1 1 1 3 1 1 3 1 1 1 1 2 1 1 1 2 1 1 1 1 1 6 1 1 1 1 1 1 2 2 9 1 3 2 2 2 4 3 1 3 1 2 3 4 4 1 2 1 2 3 2 1 1 4 1 2 1 5 2 1 1 4 2 3 1 1 1 2 3 1 2 1 1 1 1 3 4 1 1 1 1 1 2 1 2 8 1 1 3 2 2 2 1 1 1 2 1 3 1 6 1 1 2 1 1 2 2 5 1 1 1 3 1 2 2 1 1 1 1 2 1 1 3 1 1 1 1 1 5 8 2 3 2 2 2 1 3 3 1 3 1 1 2 1 2 1 1 2 1 1 1 4 1 1 1 6 2 1 1 1 1 2 2 3 1 1 1 1 1 3 1 2 1 1 1 1 1 1 2 1 1 9 1 1 1 2 2 2 2 1 1 1 1 3 1 3 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 5 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 13
491. Juhani Heino3.8.2021 klo 16:47
Ns. nollapermutaatio on alkuperäinen järjestys. Niinpä anagrammikin voi olla sana itse. Näin kaukaa hakien kävisi siis Ritva Oksanen, mutta sitä Matias-Myyrä ei tietenkään hakenut. En muista onko tällaisia kerätty johonkin - jos ei, voinee laittaa tähän jatkoksi. Mua ainakin kiinnostaisi.
492. eol3.8.2021 klo 18:54
Tuollaisille Juhani Heinon luonnehtimille "synonyyminimille" tosiaan löytyy vuonna 2004 aloitettu säie:
1148. Synonimiä
http://www.sanaristikot.net/keskustelut/?id=1148
493. Jaska3.8.2021 klo 19:29
Aivan käsittämätön mulla tuo 32. luku 3 pro 2. Mutta ei se mitään, ansiolista sen kun komistuu. Päässälaskutaidoton dementikko, nyt myös valapatto.
494. Matias-Myyrä3.8.2021 klo 21:20
Helpotetaan hieman. Juhanin arvaus on sikäli oikeilla jäljillä, että etsimäni henkilö on suomalainen naisnäyttelijä. Ei kuitenkaan niin kuuluisa kuin Ritva Oksanen.
495. Jaska3.8.2021 klo 22:59
Veikkaan, että jonkun harrastelijateatterin kantaviin voimiin kuuluu Lempi Surakka:)
496. Jaska3.8.2021 klo 23:15
Vielä pitää vaivata Juhani Heinoa tai muita sääntöihin perehtyneitä. Mikä mättää seuraavassa 6/5 yritelmässä? siihen tulee väkisin samansuuruinen väliluku.

1, 1, 1, 1, 6, 2, 2, 2, 3, 1, 2, 2, 1, 1, 2, 5...
497. Juhani Heino3.8.2021 klo 23:22
Jaska, ei syytä vaipua epätoivoon. Mäkään en laske päässä vaan tein ohjelman. Ja nyt en jaksanut tarkistaa koko ketjua, kun lyhyemmillä toimi kuten pitikin.
Ja hienoa että eol kaivoi tuon toisen säikeen, jota tämä dementikko ei enää muistanut yhtään.
498. Juhani Heino3.8.2021 klo 23:25
Tässä on ohjelmani näkemys ABUD5(6):sta jonka Jaska ehti laittaa tuohon väliin.
2 2 2 3 1 2 2 1 1 2 5 1 2 2 1 1 3 1 1 1 2 1 1 1 1 6
499. Jaska3.8.2021 klo 23:49
Ahaa, jostain syystä luulin, että pienempi väliluku tarkoittaa pienempi kuin k.
500. Matias-Myyrä4.8.2021 klo 00:10
Lempi Surakka on hauska ja vihjeeseen sopiva, mutta ei hakemani. :-)
501. Juhani Heino4.8.2021 klo 19:17
Ehkä joku saa hupia näistä vaihtoehtoisen todellisuuden sanoista:
Rauha Rentola - relanto (slangisana ja vanhasuomalainen johdos)
Eine Laine - niela (ruokaa tarkoittava sana on säilynyt muodossa nielaista)
Minttu Mustakallio - mau kollista tai mausta kolli (viittaa kissanminttuun)
502. Matias-Myyrä4.8.2021 klo 20:39
Oikein hauskoja ovat nuo Juhanin ehdotukset. :-D
Seuraava helpotus: Etunimi ja sen synonyymi eivät ole suomenkielisen sanan perusmuodossa.
503. Jaska6.8.2021 klo 13:01
Anna Ojanne
504. Matias-Myyrä6.8.2021 klo 13:32
Joo, Anna Ojanne oikein!
505. eol7.8.2021 klo 23:31
Jos syklinen ABUD-jono täydennetään molempiin suuntiin äärettömäksi (bi-infinite / two-way infinite / doubly infinite), niin onko tuo täydennys yksikäsitteinen? Entä yleisen ABUD-jonon tapauksessa, mitä täydennyksen olemassaolosta ja yksikäsitteisyydestä mahdollisesti voidaan sanoa? (Tätä nykyä minulla ei ole vastauksia näihin.)

P.S. Täydennysskeema on siis seuraava:
a(0), a(1), a(2), a(3), ...
->
..., a(-3), a(-2), a(-1), a(0), a(1), a(2), a(3), ...
506. eol7.8.2021 klo 23:37
Ja "syklisellä" tarkoitan siis jaksollista.
507. Juhani Heino8.8.2021 klo 00:41
Jos syklinen on ABUD2 eli se todistettu jono, silloin ainakin voidaan määritellä taaksepäin: kerrotaan 2:lla siinä jäännösluokkasysteemissä joka lähtöluvusta seuraa. Mutta siinäkään se ei ole mitenkään väistämätöntä. Aiempi degeneroituva ABUD3-esimerkki oli 2, 2, 1, 1, 2, 1, 1, 2... eli 1,1,2 -jonoon pääsi myös eri lähtökohdasta.
Vastaava ABUD2 olisi 5, 2, 1, 4, 2, 1, 4...
508. eol8.8.2021 klo 02:21
Kiitos, täytyypä hieman miettiä.
509. Jaska9.8.2021 klo 13:29
Tutkailin ABUD2(n) 1:n ja n:n jälkeisten lukujen summia. Niissä on havaittavissa jonkinmoista säännönmukaisuutta, Esim. kun n on alkuluku, summa on sillä jaollinen tapauksissa 3, 5, 7, 11, 17, 19, 29, ja 31. Poikkeuksia siis 2 (summa 3 = alkuluku), 13 (summa 61 = alkuluku), 23 (yllättäen summa 144 = 2^4*3^2. Enempää en laskenut. Tässä olisi teille koodareille työmaata laskea vaikkapa parikymmentä lisää. Myöntäisin vaivannäöstä huomattavan pistepalkinnon.
510. Jaska10.8.2021 klo 10:19
Pikaistuksissani jätin eilisen 23-yllätyksen tsekkaamatta, vaikka olisi tietysti pitänyt. Kyseessä oli tietysti "henkinen laskinvirhe" taas... Oikein on 22:n yhteenlaskettavan summa 276, alkutekijät 2*2*3*23.

37 antaa seuraavia tuloksia. Yhteenlaskettavia 20, summa 374, alkutekijät 2*11*17. Ei siis alkutekijää 37, niin kuin olisi voinut odottaa.

41 vastaavat tulosluvut luvut: 41, 861, 3*7*41.

43: 27, 569, 1*569 eli alkuluku.

Jatkan sopivissa rakosissa tutkailuja, vaika ynnäily työlästä ja virhealtista onkin. Perushuomio on jo nyt selvä. UBAN on sukua Collatzille. Onhan kertolaskukin yhteenlaskua. Collatzin voisikin kukaties todistaa ubanitse...
511. Jaska10.8.2021 klo 19:00
Tai abunitse:)

53: 53, 1431, 3*3*3*53.
512. Jaska11.8.2021 klo 11:38
47: 36, 846, 2*3*3*47

59: 24, 684, 2*2*3*3*19

61: 18, 485, 5*97

Jotenkin yllättäviä. Punainen lanka kateissa.
513. Juhani Heino11.8.2021 klo 12:52
Aloitan jo uuden säikeen, mutta keskenjääneitä voi toki jatkaa vielä tähän.

Pistän taannoisen omani pakettiin: jonkin kannettavan tietokoneen kannessa näkyy hp-logo muille, kun se on avattuna. Mutta kun se on kiinni, käyttäjälle itselleen näkyy jotain dy:n näköistä.
KOMMENTOI

Pakolliset kentät merkitty tähdellä *